Java网络编程和NIO详解1:JAVA 中原生的 socket 通信机制
JAVA 中原生的 socket 通信机制
摘要:本文属于原创,欢迎转载,转载请保留出处:https://github.com/jasonGeng88/blog
当前环境
jdk == 1.8
知识点
socket 的连接处理
IO 输入、输出流的处理
请求数据格式处理
请求模型优化
场景
今天,和大家聊一下 JAVA 中的 socket 通信问题。这里采用最简单的一请求一响应模型为例,假设我们现在需要向 baidu 站点进行通信。我们用 JAVA 原生的 socket 该如何实现。
建立 socket 连接
首先,我们需要建立 socket 连接(核心代码)
import java.net.InetSocketAddress;
import java.net.Socket;
import java.net.SocketAddress;
// 初始化 socket
Socket socket = new Socket();
// 初始化远程连接地址
SocketAddress remote = new InetSocketAddress(host, port);
// 建立连接
socket.connect(remote);
处理 socket 输入输出流
成功建立 socket 连接后,我们就能获得它的输入输出流,通信的本质是对输入输出流的处理。通过输入流,读取网络连接上传来的数据,通过输出流,将本地的数据传出给远端。
socket 连接实际与处理文件流有点类似,都是在进行 IO 操作。
获取输入、输出流代码如下:
// 输入流
InputStream in = socket.getInputStream();
// 输出流
OutputStream out = socket.getOutputStream();
关于 IO 流的处理,我们一般会用相应的包装类来处理 IO 流,如果直接处理的话,我们需要对 byte[]
进行操作,而这是相对比较繁琐的。如果采用包装类,我们可以直接以string
、int
等类型进行处理,简化了 IO 字节操作。
下面以 BufferedReader
与 PrintWriter
作为输入输出的包装类进行处理。
// 获取 socket 输入流
private BufferedReader getReader(Socket socket) throws IOException {
InputStream in = socket.getInputStream();
return new BufferedReader(new InputStreamReader(in));
}
// 获取 socket 输出流
private PrintWriter getWriter(Socket socket) throws IOException {
OutputStream out = socket.getOutputStream();
return new PrintWriter(new OutputStreamWriter(out));
}
数据请求与响应
有了 socket 连接、IO 输入输出流,下面就该向发送请求数据,以及获取请求的响应结果。
因为有了 IO 包装类的支持,我们可以直接以字符串的格式进行传输,由包装类帮我们将数据装换成相应的字节流。
因为我们与 baidu 站点进行的是 HTTP 访问,所有我们不需要额外定义输出格式。采用标准的 HTTP 传输格式,就能进行请求响应了(某些特定的 RPC 框架,可能会有自定义的通信格式)。
请求的数据内容处理如下:
public class HttpUtil {
public static String compositeRequest(String host){
return "GET / HTTP/1.1\r\n" +
"Host: " + host + "\r\n" +
"User-Agent: curl/7.43.0\r\n" +
"Accept: */*\r\n\r\n";
}
}
发送请求数据代码如下:
// 发起请求
PrintWriter writer = getWriter(socket);
writer.write(HttpUtil.compositeRequest(host));
writer.flush();
接收响应数据代码如下:
// 读取响应
String msg;
BufferedReader reader = getReader(socket);
while ((msg = reader.readLine()) != null){
System.out.println(msg);
}
结果展示
至此,讲完了原生 socket 下的创建连接、发送请求与接收响应的所有核心代码。
完整代码如下:
import java.io.*;
import java.net.InetSocketAddress;
import java.net.Socket;
import java.net.SocketAddress;
import com.test.network.util.HttpUtil;
public class SocketHttpClient {
public void start(String host, int port) {
// 初始化 socket
Socket socket = new Socket();
try {
// 设置 socket 连接
SocketAddress remote = new InetSocketAddress(host, port);
socket.setSoTimeout(5000);
socket.connect(remote);
// 发起请求
PrintWriter writer = getWriter(socket);
System.out.println(HttpUtil.compositeRequest(host));
writer.write(HttpUtil.compositeRequest(host));
writer.flush();
// 读取响应
String msg;
BufferedReader reader = getReader(socket);
while ((msg = reader.readLine()) != null){
System.out.println(msg);
}
} catch (IOException e) {
e.printStackTrace();
} finally {
try {
socket.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
private BufferedReader getReader(Socket socket) throws IOException {
InputStream in = socket.getInputStream();
return new BufferedReader(new InputStreamReader(in));
}
private PrintWriter getWriter(Socket socket) throws IOException {
OutputStream out = socket.getOutputStream();
return new PrintWriter(new OutputStreamWriter(out));
}
}
下面,我们通过实例化一个客户端,来展示 socket 通信的结果。
public class Application {
public static void main(String[] args) {
new SocketHttpClient().start("www.baidu.com", 80);
}
}
结果输出:
请求模型优化
这种方式,虽然实现功能没什么问题。但是我们细看,发现在 IO 写入与读取过程,是发生了 IO 阻塞的情况。即:
// 会发生 IO 阻塞
writer.write(HttpUtil.compositeRequest(host));
reader.readLine();
所以如果要同时请求10个不同的站点,如下:
public class SingleThreadApplication { public static void main(String[] args) { // HttpConstant.HOSTS 为 站点集合
for (String host: HttpConstant.HOSTS) { new SocketHttpClient().start(host, HttpConstant.PORT); } }
}
它一定是第一个请求响应结束后,才会发起下一个站点处理。
这在服务端更明显,虽然这里的代码是客户端连接,但是具体的操作和服务端是差不多的。请求只能一个个串行处理,这在响应时间上肯定不能达标。
多线程处理
有人觉得这根本不是问题,JAVA 是多线程的编程语言。对于这种情况,采用多线程的模型再合适不过。
public class MultiThreadApplication { public static void main(String[] args) { for (final String host: HttpConstant.HOSTS) { Thread t = new Thread(new Runnable() {
public void run() {
new SocketHttpClient().start(host, HttpConstant.PORT);
}
}); t.start(); }
}
}
这种方式起初看起来挺有用的,但并发量一大,应用会起很多的线程。都知道,在服务器上,每一个线程实际都会占据一个文件句柄。而服务器上的句柄数是有限的,而且大量的线程,造成的线程间切换的消耗也会相当的大。所以这种方式在并发量大的场景下,一定是承载不住的。
多线程 + 线程池 处理
既然线程太多不行,那我们控制一下线程创建的数目不就行了。只启动固定的线程数来进行 socket 处理,既利用了多线程的处理,又控制了系统的资源消耗。
public class ThreadPoolApplication { public static void main(String[] args) { ExecutorService executorService = Executors.newFixedThreadPool(8); for (final String host: HttpConstant.HOSTS) { Thread t = new Thread(new Runnable() {
public void run() {
new SocketHttpClient().start(host, HttpConstant.PORT);
}
}); executorService.submit(t);
new SocketHttpClient().start(host, HttpConstant.PORT); } }
}
关于启动的线程数,一般 CPU 密集型会设置在 N+1(N为CPU核数),IO 密集型设置在 2N + 1。
这种方式,看起来是最优的了。那有没有更好的呢,如果一个线程能同时处理多个 socket 连接,并且在每个 socket 输入输出数据没有准备好的情况下,不进行阻塞,那是不是更优呢。这种技术叫做“IO多路复用”。在 JAVA 的 nio 包中,提供了相应的实现。
补充1:TCP客户端与服务端
public class TCP客户端 {
public static void main(String[] args) {
new Thread(new Runnable() {
@Override
public void run() {
try {
Socket s = new Socket("127.0.0.1",1234); //构建IO
InputStream is = s.getInputStream();
OutputStream os = s.getOutputStream();
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(os));
//向服务器端发送一条消息
bw.write("测试客户端和服务器通信,服务器接收到消息返回到客户端\n");
bw.flush(); //读取服务器返回的消息
BufferedReader br = new BufferedReader(new InputStreamReader(is));
String mess = br.readLine();
System._out_.println("服务器:"+mess);
} catch (UnknownHostException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
}).start();
}
}
public class TCP服务端 {
public static void main(String[] args) {
new Thread(new Runnable() {
@Override
public void run() {
try {
ServerSocket ss = new ServerSocket(1234);
while (true) {
System._out_.println("启动服务器....");
Socket s = ss.accept();
System._out_.println("客户端:" + s.getInetAddress().getLocalHost() + "已连接到服务器");
BufferedReader br = new BufferedReader(new InputStreamReader(s.getInputStream()));
//读取客户端发送来的消息
String mess = br.readLine();
System._out_.println("客户端:" + mess);
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(s.getOutputStream()));
bw.write(mess + "\n");
bw.flush();
}
} catch (IOException e) {
e.printStackTrace();
}
}
}).start();
}
}
补充2:UDP客户端和服务端
public class UDP客户端 {
public static void main(String[] args) {
new Thread(new Runnable() {
@Override
public void run() {
byte[] arr = "Hello Server".getBytes();
try {
InetAddress inetAddress = InetAddress.getLocalHost();
DatagramSocket datagramSocket = new DatagramSocket();
DatagramPacket datagramPacket = new DatagramPacket(arr, arr.length, inetAddress, 1234);
datagramSocket.send(datagramPacket);
System._out_.println("send end");
} catch (UnknownHostException e) {
e.printStackTrace();
} catch (SocketException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
}).start();
}
}
public class UDP服务端 {
public static void main(String[] args) {
new Thread(new Runnable() {
@Override
public void run() {
try {
DatagramSocket datagramSocket = new DatagramSocket(1234);
byte[] buffer = new byte[1024];
DatagramPacket packet = new DatagramPacket(buffer, buffer.length);
datagramSocket.receive(packet);
System._out_.println("server recv");
String msg = new String(packet.getData(), "utf-8");
System._out_.println(msg);
} catch (SocketException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
}).start();
}
}
后续
JAVA 中是如何实现 IO多路复用
Netty 下的实现异步请求的