HDU1102 最小生成树prim算法

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102

题意:给出任意两个城市之间建一条路的时间,给出哪些城市之间已经建好,问最少还要多少时间使所有的城市连通?

思路:已经建好的城市之间需要的时间设为0,就是求最小生成树的权值和了。

顺便复习一下prim算法。

讲道理,好像我的prim算法没有判断加入这个点是不是会产生回路?

回答:只有生成树集合里的点加入超过1次的时候,它还是要和集合里的某个点连一条边,于是就产生回路了。所以代码通过vis数组判断当前点是不是在生成树集合里

就可以判断是不是会产生回路了。

邻接表形式?

知道思想就可以实现,才是合格的搬砖工,希望以后脱离模板。

附代码:

/*
prim 最小生成树算法
过程:prim算法将图分为两部分,假设原顶点集为V,将其分为S和V-S两部分,S为已经确定在最小生成树上的顶点,
开始时,将任意一个顶点加入到S,然后每次在V-S中寻找距离S中的点最近的点。作为下一个加入最小生成树上的点。
所有N个节点都加入到最小生成树中时,最小生成树构造完毕。 实现:对于邻接矩阵构造的图,可以用low[N]保存每个顶点到已加入生成树中所有点的最小距离。
每次寻找这个距离最小的一个点加入最小生成树中。再根据这个点的距离更新其它未加入生成树中的点。
直到所有的点都加入到最小生成树中。
*/ // Eg:HDU 1102 #include <stdio.h>
#include <string.h>
#include <iostream>
#define inf 1000000
using namespace std; int g[210][210];
int low[210];
int vis[210]; // 表示该点是否已经加入最小生成树中
int n; int prim() {
for (int i=0; i<n; ++i) {
low[i] = g[0][i];
} int ans = 0;
memset(vis, 0, sizeof(vis));
vis[0] = 1; for (int i=1; i<n; ++i) { // 循环n-1次,找剩下的n-1个点。
int k = -1, mindis = inf;
for (int j=0; j<n; ++j) { // 循环找当前剩下的点中 距离最小生成树点集距离最短的点。
if (!vis[j] && low[j] < mindis) {
mindis = low[j];
k = j;
}
} if (k == -1) return -1;
vis[k] = 1; // 加入最小生成树点集
ans += mindis; for (int j=0; j<n; ++j) { // 更新没加入最小生成树的点中 距离是否会缩短。
/*if (!vis[j] && low[j] > low[k] + g[k][j]) {
low[j] = low[k] + g[k][j];
}*/ if (!vis[j] && low[j] > g[k][j]) { // 上面的if是错的。low数组存储的距离是当前点到生成树中所有点距离最小的的点。
low[j] = g[k][j]; // 因为这个点加入最小生成树集合中,可以和其中任意一个点连一条边。
}
}
}
return ans;
} int main() {
int q;
while(cin >> n) {
for (int i=0; i<n; ++i) {
for (int j=0; j<n; ++j) {
cin >> g[i][j];
}
} cin >> q;
for (int i=0; i<q; ++i) {
int a, b;
cin >> a >> b;
a--, b--;
g[a][b] = 0;
g[b][a] = 0;
} int ans = prim();
cout << ans << endl;
}
return 0;
}

  

上一篇:Linux 通过进程Pid与端口互查


下一篇:Linux及Windows查看占用端口的进程