JAVA:二进制(原码 反码 补码),位运算,移位运算,约瑟夫问题(5)

一.二进制,位运算,移位运算

1.二进制

对于原码, 反码, 补码而言, 需要注意以下几点:

(1).Java中没有无符号数, 换言之, Java中的数都是有符号的;

(2).二进制的最高位是符号位, 0表示正数, 1表示负数;

(3).正数的原码, 反码, 补码都一样;

(4).负数的反码=它的原码符号位不变, 其他位取反;

(5).负数的补码=它的反码+1;

(6).0的反码, 补码都是0;

(7).在计算机运算的时候, 都是以补码的方式来运算的.

2.位运算

Java中有4个位运算, 分别是按位与&, 按位或|, 按位异或^, 按位取反~, 它们的运算规则为:

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCABLAUMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6O+MfxP8AEvw+8I+HhoHhTXNS86+0KJ9VsH07yNk2o28MtqVuLhH8ySNmjDCPaDMh8xMMyZEXxb+J9/4v1y707wvoY0Ww0kX7aBq2qX0WpG1e4uVs71YYtKkeOSeO2n3WhMsg2wrthcOstH9pXSdH1Dwj4STxFrV8+kzX2iyN4fuURdHnit9RtZb2a5byv3myzNxI0M0pi8qCWbyv9HaWPzq6+Ffhvxx4s8U68/wn0rxT4Mv/ABPb6/c+MNK0WOS8u4lCSGK1tbiJHktSLaJ5p7eS7F39pm8iNmuXFrwWXU8iy6nt/jz4t+IPDKeAJrjRZ9M1B9OuvEniTRIryyYRWNvbJFc24up5Iod0Vzf2khk3xq0dtMd33Y5My0+MfxF8P3F7bap8KfEd+9/rgi0JbvVtBtppbR40mlibbfYeaILemNEX5ooIt7hvNlFa9f4ffDz42eDPF1re6HoXhy68EaoBrLXkcVgtmlzocdpHFIzeXHbgOPLjjKx7pnZRulYtxHw6+LHw30nxf4f8N6v8UPBC+HPANpPd6E8PiC2aCT7RcXtrYRCUupMllpsfkurGTeb4O+WjSR5tpsSlpoj274veOdb8I694AtvD+nX3iC5vtWnOoaJpX2Y3VxYJY3O6QG4kjRI0uWst0hdOXjTJMio9aL4x+I5/FmgaGfhT4jsH1GZmuJdR1bRka3tEAWS5SKO+kklWOSW3Vwq8LLkEttR63xW+DesfE/Wklvf+FdarpNrn+z7XxX4HfV57XcqebiU30a/MyA/LGvAUHO3J8++EPwk0LTPjpp2p2Hhzwebrw3p2r2Wo6j4Z8HHQI7O7mlsVtomSSSRnmMUV8wdH/wBRcRtgR3EbzJWsSlGx7f4M+KWhePNd8QaTpUk7XWizGOfzYiiyKJ57YyIe6i4s7yH5trbrdmAMbxu/XV8V/ADwdq/gr406X4g1628Yeff6cYdfZbXWEtotfuPs++BoFT7LNai4bWroXMRa2R798+UBbvJ9qUpKz0JnFRegUUUVJAV5r8V/+R8+DP8A2Nlx/wCmLVq9KrzX4r/8j58Gf+xsuP8A0xatTRUdzyPxz8ePHfgrxvp3hgeLND1a9fVv7K1F9N+F2u3SWTnTpL5QrQ3rrPIUWHMUbFlWYucLG1af7Pfxl8W/FnWvBl7q/i2xtv7R8PPq9x4Xj8A6lpiXCMttukh1C5nZJvIkmiUNFlXWZjtO5HQtfhlrHjn4wfEvULPW/wCzotP8WWyW7Rl0k0+RtF0l5b2MZKzXGyJLeJXCoiXN35ouY5TbtpeHfBtrpnxi0XwVZ3l9daD4e8J6zpUaxRT2c+l2VxJpH2OD7UpVn+WG5SG4QqxFs6lnmt5pDppY2fLaxW1f4xeO9Rg8a23hPw/quvardajft4U+zz6TDHEunSRWVxBcx3FzHK0LX0ExkeNXYQXsW2SOQhY/SvAXxN1nxp4s1nS7vwHqvhvT9OhjV7/UNS02dluyA720kNrczNE3lSW8qlvvLI2QmEMniHh/XvAfg34eaHoz+MPB/gPWfD3j3VtT0qy1bU4LBbexXxBf21yIoWIG17J72BBt2hmGChQOvS/Bjx18K/ir8L9Wu9f8Q+D/ABHeeJYT4w8TaLfXtrdLYxbYSkdzCzFVWzhjtLdpGRAWtxIwV3ak15Ca02O3k+IWu6rqUHi3Q7GfU/h1aQyQSpaoJLnVVdkP9o2kQQvLDAIyqKrBrlJ5pIlcR2wuuu/4WP4duPBn/CWabqP/AAkWgH/V3fhyCTVvO/eeUfKS1WRpMPkNsB27WJwFJHxF4mt/hvrXxs0a9vfHv7Ouo/bdJ1e5vtSk8LWz2sly1zYEG5B1Q+ZcPulZHZwQFuOH3kp9O/B/xZ8OdM+HWoeLtH1TwfqCQzLpGqa14M0f7HFcy2z/AGe1tUgR5pXZUaKKGMPIZBJH5IKyoCOKSFKCSTOR8L/tQXeo+OdEsNY0nxTaR2ek6n/bdnaeCNXO+b7bBFpl2I/sryxR3EMF/KqbmCZaN2Z4wa7eb9p7wnD8KNb+ILaZ4p/sXSbu/sprf/hHbsXRktDKJG8sx/JGfJb97IURCdkrRurouHrtveeDNSb4p+Itag8Havqeo2NjJBq90w02x0VW5s72SPMAmG67njnJXbdXMdss8sRAmxPFsN9o/wCyF8QbCbRNcn1LxP8A8JT/AGXp9jo91dXUn9oXWoT2fmQxRs8G+OaMnzVTyywWTY3y0WTHaLtofSdFef8AiP41aT4d8PeFtbOjeI7vT/EOuWuhREaRNbS2ctxMYY5rqK4EUkMPmBV3MuSZI9obeufQKzsYtNHln7Qnxd0z4YeE7eyk8U6V4V8ReIpv7N0i91S6ghW2ZiBNe4mIjdbaNmmKOQsjIkW4PMgPNeNvjr4qs/Evw/j0j4ceMF0vVNclt3aVdLhbVbf+zb6ZESOe7WWBt0UU2JlhcLEythj5bWv2ndI17xJaeFtE0yPxvcaTqV3NDqtn4OtNJmS6iWIyrFdPfsqxRs0eCfmikXzYJVbz4xXjPjrwFoviL4tXNn8SdOnt9dg8MaVdXNz4X8EWfimW8uGnv4HmubptDkbc0VpbYXy4UBDqikLkaRSsbRirHvHxB+J/jPQPgVa+KLfwp/YPja5u9MsT4f1B4dQ8ia51CC1dQ0VxFHNxKzITNEDlN5j+YL4he/HH4/Xt3qNk+nWPh6PTvFmjaBcalJ4btWSH7VLp5ImC65Mw3LehSsSSZVlxLE7MYeuOm3HxM/Zn+Emks2qzXmueGLCT+xdI0HT20i7l+z20gN41xYXFtZwxN86gKhwGEUczqkdeR+Bv2aIfAXj/AMZ6nfX099p+ga5Z2p1Twr4G0V7+xvl0vT7gXUVqumzyCF5JsKlsA0LKrsJfNmmiqKXUqKSvc+r/AItfFyT4dXek29lo2ua1cvd2rXdtpvhrUb9GspJTFK63FvE8cckQJnKNuZlhKBQZUdfP/Bf7WejW3gCHXPEFp4w1EX+uTx2F1a+DNSEU1hc6o8WmyJILZY3U20tqwwxkcYADysFb0DW/FOo6h4bsPC3hPU7658YanpMcqaxqVksU2lQyIVXUr2BokVJNysUtjGhllR0CRxxzyQ+baxolr4cmg+Enhi/+12Wn6t4ZvdH8OXU082oWFta6jBc3r+ZMMtp6QQR+XMzuBMZrZX3CGBZSXUhJWs0eyp8T9Jl+KC+A1tdVGsnTp9TNxLp00VmYomtlYJcOqpM2buPiIuFwwcocBuurxrxP4ut7b9pjwih0rxHLBZ6HqmlT31v4c1CazjuLu40qSBTcpAYtpWCUs+/Ymwh2U8V7LUNWM2rWCiiikSFFFFABRRRQAUUUUAFFFFAHmv7M3/Jt/wAKP+xT0n/0jioo/Zm/5Nv+FH/Yp6T/AOkcVFN7sqXxM8x+K178LPhjZadc+IfGOq2Wu6lcaczaTL8TNT01lguryOCW5SAXgCQxB5ZMIgQLCygoAStF9S+HK+L73S4oPjDqWk232i3bWtJ1TxneQLe29w0FxbsY2Kthl+WSJpFJjmDeXtTzeq/aEg8U6l4C8M2GnzWOkaBJrPhjz9YjlMupJM2s2aKkMDxGFNpMcomkaUHY0ZgIbzF8n13STa/FDxR4TTx3qvhLUNX1HS/DlroOoaRpUGkReG90nk226awaCZpd+qx2sMDyyMHhWZP3Fz5O29zo36noPiGH4XaDpXgTWz4n8Ur4c8U4uRq198R9cs47SwNq0yXsgluwVjMrWkHz7MPeQqTuZUbmtJ+I/wCz9P8A20mqfFK+02TTtWXTEaL4s6tcR3aSeU0NxCVvQzR7biMSNtCxPHOCxSIyH0rUPCuot+0N4ZstZ8R32r2V14I1uxi8tVsp40WfRllmaa32N9okdnYvF5SoFiEccbKzyHgjxH4p8XeJPBfh3U7i+ttW8K/bL7xJeuhtf7TSN7zTLJngARfLvWjuL5Qu9Yvska4PmRSVPQi+m/4mHqcnwD0TUrvTtR+ME9hqFpM9vcWl18XNSjlhlRiro6NqAKspBBBGQQRXI/Dvxl8IPHviBNNHja+tftV3eWNj5Xxk1KaeeaG/ltYl8g3yv/pEawzQmMSBg7qSu2Npj4vePE1b9oFBoXjqxnttK/sRJNM0fxjePfxzW2p3EmpwR6HYLM95I9sI45BNGoRRnJCSbOl+H3ib+yPFV1pF3q39n6B4W8Wanc3l3Z3O5NVvdX1SeLT7dEjLNJbxve3EMxkRFW8tVCOwt5ir6FWsup0th8L/AAvffEjXfCf2nxun9l6Tp+qfa/8AhYWunzftU17F5ez7Xxt+xZzk58zGBtyek/4Z98L/APQU8b/+F7rv/wAmUaB/ych46/7FPw//AOlmtV6VWbbMXJp7nmv/AAz74X/6Cnjf/wAL3Xf/AJMo/wCGffC//QU8b/8Ahe67/wDJlelUUrvuLml3PNf+GffC/wD0FPG//he67/8AJlef/Ez4G+HLLxp8JoY9S8YMl34nngkMvjbWZGVRo2pyZRmuyY2yijchVipZc7XYH6KrzX4r/wDI+fBn/sbLj/0xatTTZUZO+55Hq1vp2h3+i2V78NfjfBc6zdtY2Kf8LGZvOmWCW4K5GvEL+6t5Wy2B8uM5IBs/DnRbD4mXHhq+sfBHxa0zwhrenHUI/EOqfEq7VY1eNJLf9xFq8kpWRGfJwGRtgKkMzR8j4v8AhVB4++PPjrUW+Hmh+J5dN8WW3l3OraXFci/mfQ9NRLSaU7jDZxwPfTSPIMJM1m0K3Mga3fpfhV8HoPhD8SPBXh7RfDuh+GvEdn4I1zS31+20+Ix608E2irBfzJEySPuLlnikdWVzMquy7ZpNOhq9t9f68zN8aeL/AIT+BLTxxJqvijXLO58OXZS1sLn4savDc6zbRRRNcyWkbXmZJElN3bLGMhp7Ro2eM7/L6Wwv/gZrd3qlpoXxD8U+Kr3TbSK+ubPwx488QavOIZJfKDJHa3UjSYfG8IGMYZGcKrqTZ+Glprvhz4eaBqumXuq65daZ491vTtRg2gtqdpdeILu2mlmSJREjRO8d2ZFiG1baVF8qOaQ12/w71PxJ4r8E694t0a7gkfxXqI1LQItXkkktrLTjHBbwTBVIYrJFCb7yP3R33JiZo23S0mS3b/hzyOTxF8ND42g0K3tvjRcwLp0l9fXK3njYS2bGREtkaD75WYC7Ik4UG0cck8dv4C8E+CPiHcazHYp8WtMTTZo4/N17xB4o0xbpXjDCSD7RcoXUHeh4DBkORtZGfxHUfht48T4sfFCDwx/wmGv2cOuWy3GoRapOrTXDaTp7yM4j8QaagYlwdqW+xFKojBFWKP3j4CeDrrUf2VfhNYaR4p1zwvJ/wj2m3bX1g8F1O++1V2iJvYp1Ee6TIVVGwIiptQbaHotGVKyV0zpP+GffC/8A0FPG/wD4Xuu//JlH/DPvhf8A6Cnjf/wvdd/+TKP+FUeKP+izeN//AAD0L/5WUWfwVdtFi0bXPHXinxZo7XdzdX1jrL2bJqKTMH+zTtFbRsbdHDEQoyqVkaJw8OIhF33Mrv8AmPNvCvws+F3xN8ZpdTReKZNR0rzbnwtrN1421x5L6weOKO4vbKR7kFYzKzQt5bHcgglJMdzAX67xv8K/BfgHwnqfiPUtQ8fSaXpkJur17fx5rbNBbqQZpipvgWWNN0jKuXKoQiuxVTZ0Hw9a/EjxF8VdL8QS313baZ4st/7Okgv57afT/wDiSacx+zTROskGTPPny2XcJ5QciRwdLxl4A8EJ4Ms7j4m2tj4/j0feItU8U6PaXl0zzSKFjiiit1UyO3lRLHDGGkIjUB3Iy767lNu61ZyOj+AvBd7eePhqOp+MNH0/wjqIs7m/uviNraxNF/Z9revO5a8AjVRdFTkkARlsjOB0t38EPBdhcWUFzr/jC2nvZjb2scvxC1tWuJRG8hRAb3LMEjkfAydqMegNfOvij4CaB4L+AnxDg8RfCbwtb6te+E9f8UWOp2WhW7SaFMyvMdNmuQGUyW7XKLbzRMokSCTEcXkAye8fETwL4b0T4nfA7UdO8PaVYahaa5LpFtd2tlHHLDYpomqslqjqoKwqQCIwdoIBxTfkxvyZt/8ADPvhf/oKeN//AAvdd/8Akyj/AIZ98L/9BTxv/wCF7rv/AMmV3H/CTaP/AMJJ/wAI9/a1j/b/ANk+3/2V9pT7V9m37PP8rO7y9/y78YzxnNaVRdmXNLueD+MfAXgvwf4h0LTLjU/GCpew3uoX93dfEbW7eLTtOtYd0947tebSqyy2kRXcDi4L8rG+PP5fiP8As/Wni/U9KufilfJptraadNBqsPxZ1adLma6uLiFoQqXpx5XlQu75IVZwz7FXcT4l6rpen/tXLeSLodz9g+wTahp0XjK+vtV1TapaBF0CGCfP2PfLdqixDLvBOs0e24FVtEk+IWjeLZPiG2u6rf6FceJ7TwbeTXWuacLm7t7fXZtOjL2qaEqqvm3E7kJcK5SQjzMhcapaG6Ttq/xOk+NE3w2+B2paBY63dePrifWYbqe3dfibeWMSrA0AcNLe6tboWJuEwqlmIDnGFJrkfhF8Q/h38bfH2heHvDdh8RXttS0m51aa+k+KdxM9jHGYAnnW9vq8ske4zhSHCurbRsYeY0XoPx8tfH9z8UPC9x4UigtNVWG507S30zxFFDeXNpO1m95LcW9xpF1FFDC8EJMgkH8CjdJNHE3mv7Gdr4/1PTfAGsXsUF6NG8MWulx6brPiKKKWw0u7FrIt1DbwaQplWRLKMx77qQZjkiaQSpLsF8Nxr4L/AKnpXxQ8O+C/hnpviR5pPH11qGl+GL/xPawN8QNbjiv4rQDz4lkF4xjZDJbgl0AxcIU8zbIE7eT4IeC4tSg059f8YJqFxDJcQ2jfELWxLJFGyLI6p9tyVUyxAkDAMiA/eGeI+NvwI8B+Odds/DuheBfB6+M9S1GDW9T1ufw9BctY28c5uDPdgBGmW6mg+zGMyo8qzXDjesMoFbwH8PvB+nfHf4fapp3wy0PwJqyeHvEq3FtZaVDblLm3vtNtTNE6xIzxsrz+VKVUvDcZ2r5jLU9NyOm7PQLT4IeC7+4vYLbX/GFzPZTC3uo4viFrbNbymNJAjgXuVYpJG+Dg7XU9CKs/8M++F/8AoKeN/wDwvdd/+TKzfgL4Z0fwd4i+L2j6BpNjoek23iyHyLDTbZLeCLdomls22NAFXLMzHA5JJ7165UttdTNtp7nmv/DPvhf/AKCnjf8A8L3Xf/kyj/hn3wv/ANBTxv8A+F7rv/yZXpVFK77i5pdzzX/hn3wv/wBBTxv/AOF7rv8A8mUf8M++F/8AoKeN/wDwvdd/+TK9Koou+4c0u55r/wAM++F/+gp43/8AC913/wCTKP8Ahn3wv/0FPG//AIXuu/8AyZXpVFF33Dml3Pn74E/B7QfFXwI+GOqXt/4pguZ/Cej749N8XatYwDbYwqNsMFykacKM7VGTknJJJK7f9mb/AJNv+FH/AGKek/8ApHFRTbdypSd3qcJ8SfAPiHW9H0nUvEHirwfa6XFcW9lpckvhXUWu7ZrueGG3iM9vqkbFvOa1YOFRVmhhnAjaGNkk0T4deJvDv2/wDZ+JPh1D/adpJf32n3PgK9f+1o3xDPPNJJqp+2SH5Fmd2kf97EZT+9Qtz/7UWm2WreG/C9ta2Him/wDEcl94cSL7Jq+qaZo0cTatbKrTzROLdZC7BA0aS3KF45FTbGHTzrVPh2sWu+MTD8KPAPiyzvdcj8MWGsancW02r6jqss8sl7qqSNpEqSspui08QDRWx0y6VUKRstavU21fX8j1zxd8MPF5uPCmn6x8QvDkGoXEMvhzSLu30LW4rx1aNLyWM3UWtiXcyaYrtI77m8oqWPmMH5rQP2b9b13UtX1DTPiZA+qW839k6jKW8UxXKNAzMkMu7xCH2gTtJHn5WScSJlZQzbmqeCr7VvH3gb4dvpH/AAiWh6P4I1FdINprd1MkN9AdJiSaJ4ZILgxwJO8CymSGaVZLpCsaPulw9G+G/gvxnceBLa103xHDqniTUbnUfE+mXHjjW5mspdMj8i4kE32tUmmttRi063WXDFlUPGNqB0m7tuJNpb/kdL8S4da8Kabc2Xi/4v8Awz8Ep4hm+0SXDaPeaHc3ssQhUutxHrcUrMqJAhKtnYEQ/KcVzWk29h8Ztd0fwzoHxS+Euv6h4RhtdUsLLw74bu1WzgjnQxKpt9ZCvCkttbs0GWQNHbM6D9yaP2lfi14etPiL4Ku/C/xZ8OaN4msZtT8N3tqPEWnWZtFmSO4ke6lntrwQqj6YsW3yAxknjG9MFX5r4H/Fu41T43Ty33xQ8H3s8uo2eiahNc+NNPvrjV7eOzuZbWCwgg0u0V1N1qibpN28vbvGMgYZpO1wSly3/r8j2+0+GXxUsvG2reKE8feDzqGpadZ6ZNG3g268pYraS6kjKj+1chibyXJJIIVMAYOa3grxR4++IdotxoHxK8EXsbWlrfqJPAmoQO1tcxCW3nVJNUVjG67gHAxujlTO+N1Xyy08P3V/+0Ze+D7a68YXPhmy1waZdCLWfFjNb250RL4XL6mNR+yqxuJI4fJKB9rqe4Nbf7J3hyyFp4Fh0y41yX/hG/CdrD4hW88S6pPBa6w8UcX2AWrXLW8ckCx3Rnt3iVoTLZlVXJ2p7XE1pd/kj0qwuPiRqmtapo9l8UPh1eatpXlf2hYQeFLl57PzV3RebGNX3R71BZdwG4DIzWl/YHxg/wCh68Ef+EXef/Lau4s/DOj6ddxXVppNja3MX2ny5obZEdPtEomuMMBkebKqyP8A32UM2SM1pVncx5jzX+wPjB/0PXgj/wAIu8/+W1ef/EzRPionjT4TC58Z+D5p38TzravF4Suo1il/sbUyWdTqbF12CRdoKHcytuIUq30VXmvxX/5Hz4M/9jZcf+mLVqaZUZO55HpPxX07Q7/Wr2y/aI+CEFzrN2t9fP8AYWbzplgitw2DrZC/ureJcLgfLnGSSTwr4utde+K6f8I18Zfg9rHjnW7SXb/ZXhye5kmjiEXm48vWGVZGRIN3R5UtY870tV8vE+KHibWfEHxy1SF/G/iPTrHwT4nhuTaaHaabKNOtJtHtbeNkEttJJJdT3OrTCOJi/nRwXSwo80cSNt/s+X3iX4f/APCB+E7jxFrniaTT/BF9FqnhC5h06OTTtT0/+yo1tYXWGFvu3ThGmmZJEkhlEjIyyNpbS5q1pf8Ar8itrnwz1SKDxFdzfE/StHs/D2oyRav/AGTp3iSwt7S4upBfyyyrb66ibc6gJnmIKRox3MiREJ13w+/Z88d/C7yU8PePNDgtoLRbGCyvtN12+tYIV27VjguNdeNNoRQCqggZAIBIPEaX4NsvFXhKz1nx1a30th4i8Wa54d8UwaZ4n1SCEPLq11Z2ZbyJoVuowyW9h88G4xSwEtFFbFD6B8L/AAgNM1Lx/wCLPB+nT6xqiai3h7Sp/EXi3VZIr+0tWjScTtcPdFGhvf7SRGEI4U7cLKZHTb7ibdrX/I00+FvxKiTxIIfGng+1fxFMbjUprXwtqUMskptorbekiawGiYRQRKDGVIKBhhiSbPhn4e/E/wAHeG9J0DR/GXgiz0nSrSKxs7f/AIQ6+fyoYkCRrubVyzYVQMkknHJNaX9v/GD/AKEXwR/4Wl5/8qaLC/8AjBc2mqLe6F4I0+5mu4k0+SDWry7S0tmixLJKptIjPIkoDrGrQiRZNheIx75J1IvLy/AzbeX4n3XiS/0CL4heCG1axtLe+uLf/hCL4bIZ3mSJt39q7Tua2mGASRs5AyM2dTtPipomm3eo6j8RfANhp9pC9xcXd14Puo4oYkBZ3d21YBVUAkknAAJrEsPBv/FyNd8PaXefYtf0TSdP1628WXEXnX93e3s17Dci9wUWe3kTTrVTAojVVjQRGIwWxg7f+wvGfifw39i1jX/+EQ1a3u/l1Twi0M322FUwHaK9tZVg3sSxhHmlNqgTv82QGcRoWgePtN8Z+KNN03x14Ij1+7+y65q0X/CF6gd3mxm0gly2rbRlNPKbUPHlZIBbLaV/8PfifqmtaXqt34y8EXF7pfmmzaTwdfFIHkXY8ip/a+3zNm5BJjcqySqpCyOG8j+Dfw+m0bxnq+k2XxN8b6Npsfk+E/C+p/ZtGMOpWWlRvHJaZksWP2i3um1IYdUaWJN6GZYpHTpfhVd6x4z8A/A3wnrniXXL+21/wRL4j1TU4797XUruWIad5cLXUGyRYwb9iWQrK/kRB5HDTCVspprqdLrfwa8feI/Elhr2oeKfBE+pWXl7HHhLUEjm8tzJD58S6wEn8mQtJF5qv5Tszx7GJNVfF3wB8SfEDUo9R8USfCXxJqEUIt47vV/hrJdSpEGZggeTUyQoLMcZxlie5r0H4N+I9R8T+CGn1W4+2Xtlq2q6Q12UVHuEs9RuLRJZAgCiR0gVn2Kq7mbaqLhR29TzNEOUk7Hg9p8FPibB8UL3x7P8QPB97rsunDSbYy+B5UWytCySSQo0epLJIryRrJ++eTY27y/LDuG67+wPjB/0PXgj/wAIu8/+W1bni7U/HllqUaeF/DfhzWNPMIaSfV/EE+nyrLubKiOOxnBXG07t4JJI2jAJ5rU9b+Nkum3aad4M8A2uoNC628914tvZoo5SDsZ410xC6g4JUOpIBG5c5Du2F5Pt+AR+DfipFqU+op4v8ApqFxDHbzXa+B7oSyRRs7Roz/2rkqpllIBOAZHI+8c+WeGf2cE8Y2Gk+NdHm+Fl5Jqt3F4qs9f/AOFe3iX8s0s4vo5/PbVROuZGDbCQAp8sqE+SvZtQ8MeJPiDcJp3i210rTfCiwxPdaZpl/Jdtq0pjUyW9wzwRBbVH3gooY3K7BJ5cfmwS8j8Mv+Ew1T4b+FPHXhP+w0l8UaTaa5qvhW/863sHvbmFJZpbS4TzWs9zytJIpinWRlBAjkkmmkE2Um0tyzaeDfHmi+LL2e28X/DOx8Ta5CLi6ki8Dzx3moRW4SMO5Gqh5ViE0aZOQnmKONwzzXhH4T614r8E/D3UdL1n4Z6xoWkadaXHhW7v/h9eTy2Vv5cTQPC8+qGWNtiQnJIfKKTyK0v2k/BOsjQrrxhpfxA8R6brulTLJ4X0e3t9NazTWJ4H0+0jJls2kKzSXflt5ku1fPLZQKCnI+GPDl74Yufgto+gfEvxvHpOn+IR4fvPDOrJpcclklto17MLO5ENorP8sMIyXdXSRJombMMwava9xq7V7npWifD34n+Hft5sPGXgiGTULuS+u5X8HX0kk8z4BZ3bVyzYVURQThEjjRQqIqjN8G/Brx98P/tn9g+KfBFl9q2K27wlqE3lxJu8q3i8zWG8m3j3v5dvHtij3vsRdzZ2/BKatp/x++IWnXviTVdc09tD0bULS0vzCIrAzXWqq0cKRRoNuIYxucNIwRQzttXHqdS20Q5NaHg/hH4A+JPh/qUuo+F5PhL4b1CWE28l3pHw1ktZXiLKxQvHqYJUlVOM4yoPYVuW8vxPuvEl/oEXxC8ENq1jaW99cW//AAhF8NkM7zJE27+1dp3NbTDAJI2cgZGfXK+K/C3iW91/TfirrOq61quraXps0+vyahDpmv8Agi2vp4AkF401zEs8m20ggjto4IyHd7e482CRlS4LV5FK8rtnvHh+X4n+KrCW90v4heCLq2iu7qxd/wDhCL5MTW88lvMuG1UH5ZYpFz0O3IJBBPNeI/irrHg7WrjR9f8Aj38HtD1a22+fYalor288W5Qy7o31kMuVZWGRyCD3rz/9lbQLGx+JcNrq+j6rYeIreHW9W066vdc8Uktb3F+jzQi21Kzt4JFX7TbiSTczvJHFKybzuXyz9o7xxpmk+JPF2tXFrrkGnaz4h0fXopr698WeHvKtbV9Jt52ktV08W/yvEv8ApIcyJ58JQGRYkNqN3YtRvLl/RH054C8feK/ilcazD4P+Mfwz8SvpE0cF6dL8K3U6xM8YkQ7l1chlYEgMpK7kdc7kcLpzax8Q4rjSIR8TfAMz6tqM+k2Zt/Bl7Msl3DHPJNCWTVSFZBa3AbcRhoip+bAPNfsziY2Pj/SZIvEfhzVNd1F9Vt57i11q6azi+w2doGF/rFjEJpg8LOqOrgKQNrKhA5Hxl8PpvCHxms5Jvib43k0203+LPEWtLbaN/wASe9mt10yxu5c2IAt3tYNQikKI6xeUksgiUNLStrYm2rR7d/YHxg/6HrwR/wCEXef/AC2o/sD4wf8AQ9eCP/CLvP8A5bVzfwv8OeJbzU/jDo938S/FN5LbeIbSzs9SnTTmnskGl6fcOYk+yeSu8zsrL5ZXA3KqyM8j9d+zzqd5rfwB+Geo6jdz3+oXfhjTLi4u7qRpJZpXtY2d3diSzMSSSTkkk1L0Id0effAnSPiRdfAj4Yy6B4r8LaZpLeE9H8i11Lwxc3k6f6DDu3SpqEStltxGI1wCBzjJK7f9mb/k2/4Uf9inpP8A6RxUUm9QlJ3ZwnxJu/GnjPR9J0zS/AvjCC1064t7pZol0Se0vpbaeG5tJgr6lFMFE9tCSpKFoZJkKpI0csPPWHgfUDrWqeKtT+FvxFl+Iep+U0/ivSLvw/pk8XlriOGNIdR2yW6MciK6+0bwkKztOIY9uv8AtRapr+hfDfwveWviXQ9K0l9Z8ORxadd6FcX9/dXi6nbSr5HlXSNLtWMObeOJpHWGQKw3Ap51qnju80/4g+MdT1bx14+0zxNpsMelGbQ/DLNpH264upXg0Zpf7DmeRYBJZCK6kEjSC/Z4kXznRtddbG2r2/U9K8Qaz8TNS13w/wCJLH4deI7PxNpeh3ektNcWejzWc0tzPYSyzCAa4jqoFk4WPzSR5oJc7CH5HQ7b44eHPF+seIdO8GfY7nVbSC0uLaHwrpaQfuri7uDKFXxOD5kkt9OzsSdxIPB3Ful8ReKNY8UeKPh34Y0XW/7d8YeGvD134pnv7vQXie51KO2tbVYpbV5rZIpJrfVbmRrZpYnhaS1ZykZ2y1dEh8eabY+Hb3w78T/Dg0v4k65HqemS2ngacQwl7E30gWOXUwYobhLKZ5BtMhlu5XyjPvSehK0XQ6XT/EPjS58WPr/iT4WeMNans5pf7EtLc6Jb2+mxOGXzCjavIZbooxjaclQEysccQkm8214U8S+KPDGveM9S/wCFS+N7n/hI9Wj1TyvtGhJ9n22NpaeXn+1Dvz9k35wPv4x8uT4h+0Xp9lafH2PwxNr98tlq934Svo9OvfiBqlrOJp/EEy3DWFiJCs3yRRZCtGLYIjxgN09A+BN34x8UfEHwbc6t8RvEevXWmeGLxvFujXEVhBZ2uqNdR2ggCw2sfmKLix1UK6s5X7IMSCOYica0uDWlzNu/AOswQWR034cfEy91CDUTeJf+Mda03xE1kpkd0eyhutaMFvdQ7lWG5aKRkVCHWXe5bSTQfEel+MPCGoaJ8M/H1h4e0PUZdWm0S7utGvDPdtZXNqZo7iTV98bSC7eSbd5nmyKJPkkknea18Y/iDr1p8e4fB8c3je60W+0nTlt9J8GvpNv9puZm1WSdJri7aOeLfb6e217eWMr5TkMjshO38Abmz074i+ONE03wB4w8Np5Nneanq3iXxKuriW+KFBA/+nXPlzC3W3b5W3GMx+YEUW5kLuwNu12dd/wtfxR/0Rnxv/4GaF/8s6P+Fr+KP+iM+N//AAM0L/5Z1W0n9nTw3okGj21re6qlnazWt5qVt5se3Xr62kSWG+vj5e5roTRpK80ZjaZlUTGVFVF9TqG0ZNrojzX/AIWv4o/6Iz43/wDAzQv/AJZ15/8AEz4meI7nxp8JpJPhN4wtXt/E88kcUt3oxa5Y6Nqa+Wm3UCAwDM/zlV2xtzuKq30VXmvxX/5Hz4M/9jZcf+mLVqE/IcWr7HI+HtS1zR/EvibWbn4NeMNSn1XXE1y1819B3afKNNt7A7GOpk7ikEnzjads7JjGSwmteLX+KC+MLv4Y+PrtLbTp9P0/Tmm8Potqtw1s1x866kC6k2VuyBvmVnnyzq8aQ7n/AAt3WPO/4SX7NY/8IL/wkP8Awin2Py3/ALT+0/2j/Zv2vzN/l+X9r+TyNufK/febv/0avn74gfEPTda17SPCut/HbXNG0C/1ZLLUF8SyaHpeq28a2N1drdC2k06Kex2XENiIp5djl3LIqjyJpLSbLSb6fmduo+LGj6Y+k6L8Pr5tJfVr3Wmg1/QtIv3FzPqk9+jKyeIYlHlNLEFO0ndDvBGQq6fwX1b4sfDLw3ofhrWPAOua9oGi6TBpdmljpmkWN0fJRI45JJW1+ZW+RDkCNclgQQBg4f7MPjnWfiRq3hDX9T+Juq+MHk0O3a5s9H1HTbqzt7u5tEmng1K0trGOSzYSRSeQ7Sv/AKiRGkjaXypj4v3/AMVNO13R7bWNO8H6fpfi3xPoMOn2tx4xupIbXUbKd784eTTlKLdJYwW6xoMLLhwjNNIS9b2Kd78rsey/8LX8Uf8ARGfG/wD4GaF/8s6P+Fr+KP8AojPjf/wM0L/5Z1m+FfiD8SNT+JHizw1rHhbwtZf2X4es9Us0sdfuZ/Nubia8jjjklazTbG32U5IjJj2ggS+ZiLpfg34y1jx54IbVNfs7Gw1aPVtV06e202V5YI/suo3FqoV3Cs/ywrlyqbjk7EztGb06GTVuhxFh4l8UWPxI13xZ/wAKl8bv/amk6fpf2T7RoQ8r7LNey+Zv/tTnd9txjAx5ecndgWfF3jjxp4m02LTrf4X+PtHtZZgL6WzvNES5lt8NuihmGqgwMx2gyqC6pvCGOQpLH7LVbU5LyLTbt9OggutQWF2t4LqdoYpJQDsV5FRyik4BYIxAJO1sYJfyFza7Hg/irU/GV9aeHLXwx8K/FPhW20XMNvCtl4buUtYjF5IezVtSAt7iOIvHE/zxKssivDKCoUvIdQTw34e0nQvhF8RfCkvhy0Ww0bU9K1Dw+91ZWwRIzADcahKssbJHGGSZXBKRvjzI43XpdB8e6x4u+Cupa3r9zfeFdWg1bUdOnl8FWL6tPb/ZdVmtVEEb20zTZWFQzmDozvsj/g+Wdd+Mlve+KrXVJ/2gvsl7pf8AYbae66t4cnmii1HVJrXUoZZYbMRyeVZx21xJEC8UUqo5aVY4pKtJs1im9O3qeyynx3ZfEXwFPoHwo8faB4M8MQ3s1zZ2/iLSXOsz3KOrpd27X+JmDstwLqSd3Mhl3Rs0nmr6n/wtfxR/0Rnxv/4GaF/8s65H4Iar4nuvCfiTVbHX5/iDrt7NBc27apr1vcaBKoJhZrHUbPTkG3ELrJF5G5ZoSSiiYTTcR4Tv/ippnxv0vw9e6d4P1TxF4Z8MX80MF74xujLc6dqGpJ9nxI2nNLK1qmmxwySOrGQzROz73IKtcTV+2h7L/wALX8Uf9EZ8b/8AgZoX/wAs6P8Aha/ij/ojPjf/AMDNC/8AlnXN+FPjJ4w1vwZYf2npGh6Z4s1zxZqvhfS/slzNd2EH2SS93Tz7kidtkdhcYRcecyx/NbiZvI9A+Hfi688SJr2marFAuu+HNRGk6jNZqy21xKbaC5SaFWJZFeK5hJjYsUcugeQIJXl6dCGrdDD/AOFr+KP+iM+N/wDwM0L/AOWdc38MvEvij4dfDfwp4T/4VL431D+wtJtNL+1/aNCi8/yIUi8zZ/ajbd2zOMnGcZPWvbqKV/Inm6WPEf8AhJfFF94z/wCEg1b4S+N9R+xfLo1j9o0JIdO3R7JZsf2ofMuH3SL5pxsiby0VN87TYenv4tHjt9e1X4XeMNRtbXUZdW021gi8P2syXclu1s011Mmqf6S0duzW8XyJtiIEnnyKkqfRVFPm8h8/kfOujp4w0j4oaj42PhD4tXs9/ClrPpNxceEhZtbxtcPBCNlwsoWJrqUq3mbzxvZwMUfBvxJ8TPCOm+I5vFHww8fajqGt65c6vHZSa/o+oxaVFIEAtIJ5L6ItCpRnVfKQIJdmG2mR/oqijm8h89+h5r/wtfxR/wBEZ8b/APgZoX/yzrxrWfhkdS8E+JtHPwm+Jmp6zqmnalp9l4g8U65pWt3OkrdxzRN9m+0auTEqpKEIjKNIkaCRnI3V9X0UKVthKdtkfNnhyDx5ovxI07xZqXhj4p+K/sWk3ulx2msnwonl/aJrSUyI9rdwYx9kAIcPncCCm0hy/wBL8Q3ugtbTfDb4i6lrk+raTqd74g1W48Oy3V0lhfQ3UVuVi1CKOOMCJkVY0VVMskhVneQv9J0Uc3kPn8j5+0S/8ZeDvt6eHPh98RbPTTaSQaX4evpPDdxpWlyHBRo1W/juDGjA4h+0BFRjGgjVYwhcT+IYvAOseH7H4TeN2vdV3S3+qau3h2/OpzMFEhvIm1FVmjkRBE8a+WFhxHCYVSPZ9A0Uc3kLn8j5+0m/8Zab4b1q3j+H3xFsfEuu3a6jqfiHTJPDaSPchIo8wwz380UcYhgihVGVyEQFneUtK1n4Van4m+FXgnTvC8Hw3+Jmv6fpsMdrZSavd+GfNt7eONI44QYL2IMqhPvMGcljljxj3iijm8g5vI+fvgT8Qde0P4EfDGysvhl4p8Q20XhPR9mpabc6SkE2bGEnaJ76KQYJKncg5U4yMEldv+zN/wAm3/Cj/sU9J/8ASOKihvXYcmrvQ8f+NXxL+GrpojWeteAbnxVYXGmpqN5L4h0221a1i0/Uba/ayPnOh2ubaaMI0ihZ2h3KEaSWHnrDx74Z1DWtU8T/APC4Ph1pltcatFrlr4G1zxNZX0Es6Lnzbq7hZJEuMrAqKzXsFoYA0QmEdsLf690P/kCaf/17x/8AoIq9VuVm0W5pXVj5i8T/ALS3w/T4g+EfG1p4o8OajBZ+GNUtbnSbfxXoy3kVxc3WlPHCfMvFiLBYLgsyyFP3RwxLIG8/8FftKeB/B/xEv9YEH2vSUtLr+y0m8Z+FjPbXOoalc32p5C6oqmN2+wKm4sVFuRxlmk+3aKnmW1iVNJWsfFfxwvPhJ4gGr+K7f4zweMPEVxqOiMmlWnj3T9MWKwtNVFy8EAgmtY3ZI5bgxvcO8isFKyK/zHrvDnxv8M+Bdat9Uh+Knw68Q3PirVmuPE9q3iuygg03Kny7i3l+/L5NtDb2XlmMeeY4JT9nP2gyfU1FHNpYOdWs0fH2o/Gzwb4p1LxJJd+JfAJ1DxVDaf6fq/jOwS20Gxt2c2sA+y3BmmvoZ5JbzMYiUPOUS9/cRSHpPAnx68KeAPFn9iyfEf4Z+JPDupzXWp3/AIwbxba2moibCLHHcW5eQXMzAIBLG8MSxxlEhhSKGOT6doo5l2DnT0sea/8ADTPwf/6Kv4I/8KOz/wDjlH/DTPwf/wCir+CP/Cjs/wD45XpVFToR7vY81/4aZ+D/AP0VfwR/4Udn/wDHK8/+Jn7Q3wrv/GnwmntviZ4PuYLLxPPcXUkWvWrLbxHRtTjDuRJhVLyRpk4G51HUivoqvP8A4mahLZeNPhNDGkDJd+J54JDLbxyMqjRtTkyjMpMbZRRuQqxUsudrsC1YqNr7HjP/AAnvw387/hGv+FwfDr/hBf8AhIf+Er+2f8JNbf2n9p/tH+0vsnl7vL8v7X8/n7s+V+58rf8A6TVbX/2lvC/xM1LSLnR/FHg/4carpU2+PxH4m8V6TcyxxMytJbx2lleSi6hmEQSVJZoAhMMse+SJDH9X0U+Zdh867HzF8Lf2j/A3ge4j8Oa54u8H6ldXcz3V/wCN9P8AGGlyW+oTeXtNzdRyzxzxTSeUqiCKOaKFDDGkvlx4jtR/Gf4YeLf7T8T+JfHnw6utWuNJu9L0zwvqPiix+y21nPsaS3u5EaVZJJ2hg85gskcYRUiEm2SW4+k6KV12FzLex8s/C740+AdF/tfxHN8SvC0epSeHtN0DT9N8U+NNPlv7j7B9rZbi/ureSVFknku23eWJcKiyHLSNFHm+Fv2l/Dvwo+EfjRtX+IHwsh1ZLvVNU0g6P4pk1tJLm+vrm5SOe3ht0n8uOS4iRjErllDviPFfXFFPmXYfMnujxrwN+1J8PL/wT4fufFHxK8A6b4mm063k1SytfElk0VvdmNTNGhE7gqrlgPmbgDk9a0tT/ad+FcWm3b6d8T/AN1qCwu1vBdeKbWGKSUA7FeRWcopOAWCMQCTtbGD6nRU3RF49j5Z+F/7Rnhn4beCNei1/xZ8OtUuf7WvtUs7Lwp47srqe5+26jcXUkZ+1i0jTyhcKMmQ7wjHCnCnE1n4zaL421LVdc0L4o+Afhna6jCi3+jXni6zlvtbKNGP30trO0emzGOFrcXVu9zIYZ0YhZLaBY/sGiq5lvYvnV72PnXw7+1z8P7Dwnc6faXXg/QrzSIbeysNOXxjoyabcHPlj7PLFcF0tYgAxaSCOTysbIGf91WH4h+Kfwp0Hw3Ffx/Ebwt4v8Sy+IbXxFqd5o3inTLC9kuY0ji3WiTzeUkZhhitGiaVC1q0waWWVmM31NRSuuwuZdj5Z0/x78N9N8GaBJF8YPh03izRfEOo+K7e3fxNbGwe5vZL5pbR5d28xiPUZolnCAhljlMTAGBuu+Hfxr+FfhtNe1PVfi34BbXfEeojVtRhs/Etq1tbyi2gtkhhZnDOqRW0IMjBS7h3CRhxEnvFFF0wckzzX/hpn4P8A/RV/BH/hR2f/AMco/wCGmfg//wBFX8Ef+FHZ/wDxyvSqKWhPu9jzX/hpn4P/APRV/BH/AIUdn/8AHKP+Gmfg/wD9FX8Ef+FHZ/8AxyvSqKNA93sea/8ADTPwf/6Kv4I/8KOz/wDjlH/DTPwf/wCir+CP/Cjs/wD45XpVFGge72PNf+Gmfg//ANFX8Ef+FHZ//HKP+Gmfg/8A9FX8Ef8AhR2f/wAcr0qijQPd7Hmv/DTPwf8A+ir+CP8Awo7P/wCOUf8ADTPwf/6Kv4I/8KOz/wDjlelUUaB7vY81/wCGmfg//wBFX8Ef+FHZ/wDxyj/hpn4P/wDRV/BH/hR2f/xyvSqKNA93sea/8NM/B/8A6Kv4I/8ACjs//jlH/DTPwf8A+ir+CP8Awo7P/wCOV6VRRoHu9j5++BPxz+G/g74EfDHR9f8AiD4W0PVrbwno/n2Gpa1bW88W6xhZd0buGXKsrDI5BB70V7xpmnxaRptpYwPPJBawpBG91cSXErKoABeWRmd2wOWYlickkkk0U20xtpu9j//Z" alt="" />

3.移位运算

Java中有3个移位运算符, 分别是算术右移>>, 算术左移<<, 逻辑右移>>>, 它们的运算规则为:

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAA9AdUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6O8Va5438AeFT4h1T4jeCPDnhaN7eJJ9T8J3cv2ZJpUhhE0y6min5pI1aTYijliEUHHLT/Hie0u4YLj9oP4PW3n2iX1vPPoUscFzC0s0IaKZtYCS4kt5lYIxKlfmA3Lm9+0/pUth8EL3xZFLPdT6ZY2UItp7aO6tLG0kuI49SuvJa2uAWaylnR5Xhn8uESbEAeYS+PfCu78V3Pxj+HHhrVJ/Ed1Zy6jLql3/atrdLcyLaac8S3clzL4f0+VmDCyt3mNy7OkywyLIkzCuG17s8m102fSemWnxU1vTbTUdO+IvgG/0+7hS4t7u18H3UkU0TgMjo66sQysCCCDggg1ieGfFfjfxj/ZKaP8WPh1eXOq6TFr1nZf8ACIXaXUthLjy7nyG1YSLGSwG4qME4ODxWl8YrDXtHzqml/EHxTZXuqXdvp2leHNMj0kQyXMmEADzWE8wjUCS4mfMhjijncIVTbXkf7NPhLV/FXws+G2nav8Q/FOga1Y+HrHVNIsUtdEuIPsptEiW4spZdNLnZHP5MisTJEZdrl0lilmhLS5mldX/r8j1zxNL8T/B3hvVtf1j4heCLPSdKtJb68uP+EIvn8qGJC8jbV1Us2FUnABJxwDWl/YHxg/6HrwR/4Rd5/wDLavGv2i9B8P6h4hsvCmlWHj7xTqHiHXEs9bg0jxfei0hiaGW+nsTDPfw2264tYJk8lSohhmEhC7rdJtLw/oWk3Xxp8E6LqPw6+JmlXSQ3mvWWp+I/H015FaS2vkxF/ITVJw6sLwxNkZIlC7HjeVoy2n/DDtpf9Edff+K/G+l+PtL8E3fxY+HVv4s1S0lvrPSJPCF2J54Yzh2Vf7W/3iB1YRylQRG5XS8Py/E/xVYS3ul/ELwRdW0V3dWLv/whF8mJreeS3mXDaqD8ssUi56HbkEggn510PUPEll8ZfimukTeHLDS7vTrVtb1vSdFk8NWd7Lb3uqi7eW+S5upbJt0F8j3kkBL/AGcqj27NbTy9d+yZrHw00zxJoraT4SvrDxt4s0m4kj1a38GPpdgbC1eLb5UyW0MbxzCWOf7QETzWdN62+ba1jbVkNxsrr8j27+wPjB/0PXgj/wAIu8/+W1H9gfGD/oevBH/hF3n/AMtqPDn/ABb/AMfW/grRv+Jh4euLRr2PTYvv+HIwSEXJ+UWcrK6QxE742R1iWSBGFmeHP+Lf+PrfwVo3/Ew8PXFo17HpsX3/AA5GCQi5PyizlZXSGInfGyOsSyQIws4M9Q/sD4wf9D14I/8ACLvP/ltXEfEG1+LOn+LfhlBN4w8EXEl94hmt4ZP+EKnPkONJ1CQv8+pOw+WNl/dtG3z8uU3xyfQNea/Ff/kfPgz/ANjZcf8Api1ahMIydzNt5fifdeJL/QIviF4IbVrG0t764t/+EIvhshneZIm3f2rtO5raYYBJGzkDIzm2Hivxvqnj7VPBNp8WPh1ceLNLtIr680iPwhdmeCGQ4RmX+1v90kdVEkRYASIW8i8VaBrHjLxs8HiXw34W8Za/J8TYrNtI1WRxpn2ZPCMtzFaGaSCZmjhe4nkU+SA8rySCOEysF7j9nOf4g+FNBvdHh8FeFrHwtoereIkutF0fV5DqcMz301zawW8EltBBHGY5VEYkeMSRT28wMS/I1tWRbVlf/I6W+8UePtNtPEV1c/ErwRDbeHbuOy1aY+BNQ2WcjxQTBpG/tTAjWK5hkeX7kalmdlCOV29Tsfi3pGm3d9P438HyQWsLzyJa+A9QuJWVQSQkUeqM7tgcKoLE4ABJArxrS/Btl4q8JWes+OrW+lsPEXizXPDvimDTPE+qQQh5dWurOzLeRNCt1GGS3sPng3GKWAloorYoeu8J6D4f8LW/xI8cW3iefwfBbaj/AGDYeLPEfiG9v7eS3tJIkdLqO/unQquom/t+PKcoz+U6GUSsga/qyOl0zWPiHrWpWljYfE3wDdz3mnJq1m8Pgy9aK8tGYDzoJRquyZQWj3bC2wSwlsCWMtZ8My/E/wAY+G9J1/R/iF4IvNJ1W0ivrO4/4Qi+TzYZUDxttbVQy5VgcEAjPIFfP2vat8NZNaVvixouueDLCTw9ItvounP4hQR6Tcq8kFu1rZSm3sY0stPKXFuVBkmtbh9iRW6yT+gWNlpuufsnfFa8TUNVtEu9D1jTLnV/EGqavd2zG3huIZLlLa9kmurRVfzVkhMfmK8TqPPVIpZG0Nq3/DI9BuJfifa+JLHQJfiF4IXVr60uL63t/wDhCL474YHhSVt39q7Rta5hGCQTv4BwcaX9gfGD/oevBH/hF3n/AMtq8/1vW/iofj94Md/Bng9dQXwxriwwL4tujE8RutJ8xmk/swFWUiIBQjBg7ksuwB/Sv2f7SLSPgt4O0NL2DUJ/D+nR+Hru4tVkETXdj/odyE8xVYqJoJVDFRkAEcEVL0VyHdK/+Rh+Jpfif4O8N6tr+sfELwRZ6TpVpLfXlx/whF8/lQxIXkbauqlmwqk4AJOOAaNWl+J+h3+i2V78QvBEFzrN21jYp/whF83nTLBLcFcjVSF/dW8rZbA+XGckA1v2ntf8N+HPBNzqPiPSJ/GsWn6dfanH4IHlm21MW8Ykee6V1I8m3AzukJjV5YyI5Lj7KtfOur/Be18A+F9Z8Kz/AA0+HXjGSHVtL026fVdRntHX+0rm3tWvLWzj05Vs/tLSSN50E0nlNH5SSSpYxW8bSuioq6v/AJH0VqGt+PNI8Jp4ovvi18M7Lwy8MVwutXHhieOzaKQqInEx1gJtcum05wdwxnIrkbf48T32taPpFl+0H8HtR1LV7tbGytbDQpbl5ZmVmVSI9Ybbu2FQWwCxRASzqpq/HVNd+HX7PF4F8HeD/BfhnQIYtblj0DxQLI2V3bXwu4I7NJNJaGRpJYoMB0XfJMybTw7cR4Z8X/EPW/iT4IGrzarrGoW2ozz6PYeKZb3SrOa7+wXSMDN/widtlhbvcsFMoztzg4xTSurjUbq/+R7xq0vxP0O/0WyvfiF4IgudZu2sbFP+EIvm86ZYJbgrkaqQv7q3lbLYHy4zkgE0SX4n+Ivt4sPiF4Imk0+7ksbuJ/BF9HJBMmCVdG1UMuVZHUkYdJI3Usjqx5rx1puv/Ej4xeHPDWtWH/CPRJ4T1a9tLq01e4dBqqyaWv2iI2728wjhFzLAsnmQyyrLdIUijfdLyOjfDfwX4zuPAlta6b4jh1TxJqNzqPifTLjxxrczWUumR+RcSCb7WqTTW2oxadbrLhiyqHjG1A6LoK2mv5I6XU/jReaJqV3p2o/tDfBew1C0me3uLS60lo5YZUYq6Oja0CrKQQQRkEEVWt/jxPfa1o+kWX7Qfwe1HUtXu1sbK1sNCluXlmZWZVIj1htu7YVBbALFEBLOqnpfjn8ZdRtvhv8AEGX4a39jdat4a0nULrUddwtza6TNbwyN9m2g7ZLwsmPJPEI/eTDmKK467RLuL4W6t4d8EGygtPCtzDHpXheW2aRmha3tCxsp97MzN5VvLKk+drKjo4R0ja4Ogul7fl/kYfiOX4n+EdFuNX1f4heCLPTbbabi6Pgi+ZIELBTJIV1U7I1zueRsKihncqqswsyWnxUi1KDTn+IvgFNQuIZLiG0bwfdCWSKNkWR1T+1slVMsQJAwDIgP3hn518V/CjTdJ+KPgy21X9nnQ5PN1aScaf4c03QzpV1bR6Zdq0EVzcvby3Nw01xFM0c0cI2WbGKNvs0k0vS/shfCq00WTRtQi+Hljo2peH7S30PVr7U9L0hXjv4bMQ3U2mX1lvlnzMskdwLhjlpmCyRtBLA7a0uU0kr3/I9u/sD4wf8AQ9eCP/CLvP8A5bVm+b8Tx4k/sBviF4Ij1Y2n25LeTwRfL5sIfYzRsdV2ybGKBwpJTzYt4XzY93qep3cthpt3cwWU+pTwwvJHZWrRrLcMASI0MjIgZiMDcyrkjJAya+NPFXgaz1n4teHtK1H4W/Fq80+98Ma3Dc6Ve+PFmluojPpivh21sgQgMVkjLqHMkR2PszHMdSI+9v8Aoe8eGZfif4x8N6Tr+j/ELwReaTqtpFfWdx/whF8nmwyoHjba2qhlyrA4IBGeQK4j/hff/VyPwQ/8F3/36rS/Y/vtRvPhv4ZvL/w943judW8PWF9d+IfE/iFdTtb6byUJaCNr6eSHzDK74EUQIADAFVWvn7wb4g2eAP2cU/4T34pw+R9k/c2/gjzIbL/iQXi/6E/9kN9pxnyx80+YmeTnb5q0lqy1G7aPpTwB4r8b/FPRZ9X8I/Fj4deIdNgu5rGS6sPCF3IizRNtdSRq30YHoysjqSrKxIfFHj648GaJ4sj+JXghtA1r7B9gu/8AhBNQHnfbZIorX5P7U3LveeIfMBt3ZbaASOa+Gcuj3v7PdrDrd1rmuWl94s1+JNIe2S3v/Ekh1fUGW0nt2jix5mDJLERCgWKQTbLcTrXiFn4W07w78N/EPjWy+Fvw61SPV/Cb+PLfRtZnaG1jhMLzIU09NOEFxJaxyRWpKzggYk/0V9QmMpbUFG7f/APqZ7j4kR6Le6w/xQ+HS6TY/aPtV+fClyILfyGZZ/Mk/tfavltG6vkjaUYHGDXn2oftFxaZAk037R3wXdGmigAt9GkmbdJIsakqmskhQWBZiNqKCzFVUkad/wDDXU/BvwB17wZp3w+8A+C/DN7p17aav9j8XT2sVvaNapEbtrl9LYvNsEm+SZTgRIzPJuIXxDQ/il48+Imk+DNQ1i+8R3OjanqOjaha2mtme1s5bg3dvNZRy3cPhJIwrTiBdyThGzw5ByRK44xvr/kfTviGX4n+FbCK91T4heCLW2lu7WxR/wDhCL58zXE8dvCuF1Un5pZY1z0G7JIAJBYS/E/Uta1TSIPiF4IOpaZ5RurWTwRfI6JKu6ORQ2qjfG2HUSLlS0UqZ3Ruq4fxMm8SeKvEvwm8N+KfD8GmaXqeuTjVX0rXZJYXlXTdTltooXWOGVmja3iuTKyxGKVLcxGRlLxef3nwz8L6rosul6ha65feO9Q8Q23gjWbKbxjrrQahbIxupid18R5baVLc3qQvJIIzMYiZJNyul5kpaa/oeuX8vxP0vWtL0q7+IXgi3vdU80WayeCL4JO8a73jV/7V2+Zs3OI87mWOVlBWNypby/E+68SX+gRfELwQ2rWNpb31xb/8IRfDZDO8yRNu/tXadzW0wwCSNnIGRnyP9pbS9BtdT0XRvDtn431zxSLtbBdT03xbqxTQpU0ueQMqi5bdePZwyk+XFNKFlMskU7TRQXfXf8JrrugfFrxH4r0y1g+IOlx+AvD91qMHhiAfadQVp9XdLnTlaZkdchj5Bcs6SApKzRiOctoFtL/5G5qvijx9of8Abn2/4leCLT+w/IbUfN8CagPs0U2PLuG/4mn/AB7/AH91wP3SeTPudfJl2aVvL8T7rxJf6BF8QvBDatY2lvfXFv8A8IRfDZDO8yRNu/tXadzW0wwCSNnIGRnyz4061YeIX8W6ZPLB4s8MrMmkaxr2ni7jltZ7m5aC00y4OlzLLfrbtNfK9kEDk32nq+3fPdA+Eeo/DDxX8X7OPwHfeMNVt9QhGsXEtzrXiW0ZZ4YrZluZ/tk6w3sLwT6emwBnVXt8pLDMWgdtLhbS/wCh6n4ml+J/g7w3q2v6x8QvBFnpOlWkt9eXH/CEXz+VDEheRtq6qWbCqTgAk44BrS/sD4wf9D14I/8ACLvP/ltXjXxok8V6f4H/AGoU0PT/AA5rGhXcN3JqFzcaxdWt5YN/wjtkjxiD7E8crCNElXEwVvMCkoQ2PU/Ap1+1+NmtXvjC20PRtW1/w9aQ6dpejalcajvh0+5uDcTPLJaQKnzarbKE5J5I6HCtpcTTSv8A5BpMvxP1y/1qysviF4InudGu1sb5P+EIvl8mZoIrgLk6qA37q4ibK5HzYzkECtpmsfEPV/BNp4wg+JvgGPwzdacmrR6ndeDL23iW0aMSiZzJqqlF2Hcd2MDOcYNfOvwa8Kax4u0XwD4ftrDxTpGneKvh7qWpa/B4l8RPdWXimWVtNeVoCt3cmy8+W6mMk/2dZRHdy7EEhDxe3fBDwzpdn8bPEWsWEXimy+3eCPD12LDxRrN9d3Vt9oudUZop47meXbInlIu0k+WfNC48yTc2rFSVr/8AAMO7/aLisriyhk/aO+C7PdzGCMxaNJIqsI3ky7LrJEa4RhucqpYqudzqD1/g3xd4w+Iv2z/hE/jL8LPE/wBj2faf7G8OTXfkb92zf5esNt3bGxnrtOOhr5r+InxXutc8UP4rfxBrnhfSfFVpZ61pGla74kg054bJ7aJEaKKHxZZr5btE8mTCG3SOCTjj2XxJ8R/E+m/sj+OtPsNO8Rjxn4O0ObQtT1PWr23truGeLR47ltRaWC4uCWZJY3UI7uZnVWKLvlRtdhuOit+h1+j+KPH2vWnhW6sviV4IktvFNp9t0eaTwJqEaXcZiWYKrNqgCyGJjIImw5VJWCkRSFek/sD4wf8AQ9eCP/CLvP8A5bV5t4m+HPw/8IeM9Wg8Vf25o+gaNpMvirQrjTPFGtW8NjbW8Zgv44baC6Kw/Z0nj2+UsYMV8Io4yIZC3qfwH8DN4B+F+jWdzp8+k6zewrqesWMuqXOoLBqM6rJdhJJ5pm2mYyNgSEFmZskszGH5Gbsldfkir/YHxg/6HrwR/wCEXef/AC2o/sD4wf8AQ9eCP/CLvP8A5bV6VRU3I5mea/2B8YP+h68Ef+EXef8Ay2o/sD4wf9D14I/8Iu8/+W1elUUXDmZ5r/YHxg/6HrwR/wCEXef/AC2rm/H0/wAT/CWmaPqGr+KfC2q6a3iHRLO4tNN8PX2nTuk+qWsBKzrqb7cebuKsjK4BR1ZWYH26vNf2gv8AkQ9L/wCxs8M/+n2xpp6ji7tGnqmkfEia0tV07xX4WtLlcfaJLrwxczpJ+6iB2KuoIU/erO/LN8skadY2eQrt6KVxczPl74r+CB8WLnSodW+Bt9rmnQW5sb3VX03QZ7+9tVOY1s7ubUkktI2JkJJi8zbKShgkAcUbv4PeE7nxtpOtp+yzPDp9np15ZzaSukeGPKuZZpLV452/4mGN0Qt5VGVJxcPgryG6r9p1NTf4Nh5lnbw7GmlRx2+jXc9vqdzqE17BDbyLLFbzSQrbSPDcr5McsssqIuFRGS48V8JWereI/iF4C0nW7HxTomq6vdxadda1beIPFtnHNBb2l3dPasLuztGljZxdyRb7uWeJ51+aWCMw1trqzp1ab9f63Poq08R6lZ+LL3xKvwT8fTazdQi3M9zq+kTrBFhNyQRvqpS3VzHGXESoJGjRn3FQRyNj4aF98HfBvw98XfAfxT4y03w3aadDG1+2ghJZrSNESYIdUbbu2EFMkFXdG3KzA+geNPFXjL4ZabM2neHvDl74V02GC3tr7WvFd/8Ab7gkJGiNGun3EkszyERqBJJJKzL1d9teNfs06n4+8S/Cz4ba54b0bQ5l0bw9Y6PPbT+ONQtUmjS0Qqlzp76Y8cUjCSKcSJ87L5W2aSB/3kK9rmava/8AX5nXeP4/E3i1PC66J8M/H3gh9E1yfXBc6L/wjLSySzW13FLtE1+8Ss73jyM7RuWO7gM29a3hyDx5ovxI07xZqXhj4p+K/sWk3ulx2msnwonl/aJrSUyI9rdwYx9kAIcPncCCm0h7P7UOp+JNPfRbJ/HXg/w7oV9rmnX0I1rR5M2EVlcwXUlzdXX29F8nzYYogREoaS6toSyGUSg8L/F688YfEXwxoGnfH74Z65dSzSXkmjeHNCaSXUbeJMTQeb/acwibEgkXAD5hLYeOOVS+g1e1/wDMw/E/h/xRdeJF1jw98Gr6w+z2mj2mnWGt6NoWoWum/wBnvftFLbxprcHlSD7aqoykeWIiBnf8nXfD271X4dwXzW3wf8fanquozNPf6ve3HhxLi6YyPIAVgvo4kUPLK+2NEUvLLIQZJZXfyNPiPf8A/DTHi27udO8YXXirRtDtTp1lq17aXq+HIbq4uBdF9M0a4aW7hKNYMIzHLKWjgMssCGKdfU/2X9L1TTY5rq+8b313p2rfbrqx8LalLYyTi5+2M+p3jNFaW8wxdTlBCyqYQ485I5JBb249gldLU3PCPinXPB2my29v8HfH15dXMxur7Ury+0Frm/uCFVppmGogFiFVQqhURESNFSNERTwj4p1zwdpstvb/AAd8fXl1czG6vtSvL7QWub+4IVWmmYaiAWIVVCqFRERI0VI0RF67w54j1H4g61b6vpFx9j8EW24290EVn15ypUSRlgdlmudySLhp2CuhWBVa6PDniPUfiDrVvq+kXH2PwRbbjb3QRWfXnKlRJGWB2Wa53JIuGnYK6FYFVrqDO/kZn/C1/FH/AERnxv8A+Bmhf/LOvP8A4mfEzxHc+NPhNJJ8JvGFq9v4nnkjilu9GLXLHRtTXy026gQGAZn+cqu2NudxVW+iq81+K/8AyPnwZ/7Gy4/9MWrUJ+QRavseWaz4a1zxBreq6jd/Dj4mWT3fidPEkJ0i/wBBtZYiNIj0uS3Mv9pM214llPmRmORTICjIyBzW0nwp4h0jXvA2q2/wy8b20nhu7aa4tLFPDtta6oiWNzYWryQJqYSK4it50QywhFkEYUxBFgWDN8b6z4p0X4xT6npPja+HixbSxXxXpegaMda03S4RJM+nWLQQ2Ul425Z76dpt8Rk8jYfsgvLZoLPwV1fSdI+Iusmx8dfFrVNK0Oa/Mmhat4Lmhtp7q5Q6leSzNFpyEsxniaKJhFMrq6xh47lFbTWxrrb/AIcsqPixo+mPpOi/D6+bSX1a91poNf0LSL9xcz6pPfoysniGJR5TSxBTtJ3Q7wRkKubomhfFi3+Cd/8AC7WPBuuX2gP4Tk8L2dzY6RpFtdQ5thbxzyM3iCRZMJklAibiRhlAwcPxb48n1r4qeMZLfTfGGvwXE1rfWdmuqeONBl0+0a1igCNZWemPGqvPbXbiTPzln7qcelfs5eKtD+Gnw21Gw1hfEenXg1HUdZujqem69LCpur9jDb29xqFrG88zCaCMRIvmTSl2CO7szDulsDulexxHxI+EGsfFLxDquraz4Z+NCvqMLWrW1reeD0iitzDfQLCmZS21YtTvUDMzPiUEsWRGXpNG8M6/p3w68Y+Cr/wR8Wte0bxPDfx3Bv7vwoktq1688l1JC0FzGNzvcyN84dVIUKFAIOJ4B0jxh488LeALCy8V6H4cudctIfiVp7T+GJrqaO5muUu9RiiuE1BCsYlvzCytGha2vfKDykTOPU/AGha18VvD2uTeMvFs+r6f/blzb2UXhyG88My2ctlNNYzp5ltfvJNC8kLyKHfOXJP8CRJuwN2Wp59ceHPH914ksdflt/je2rWNpcWNvcb/AAONkM7wvKu3O07mtoTkgkbOCMnOadG+KOl6D4J8O6X4J+IpttN8WXPifVdeXWdDsbq8R76a7NpLbQ3vl3EcwuJI5BvgVSqSBGA8mrOm6V4c8S/EHW5tJufiZeeEPD+h216RY+MtZuG1xby6kjS9tlF75rQ26WF0VCAtcrMWiSQCAzdL42g8N/CD4daZN4L8b+I/DekanNPqdtf2+pR3ul3Uty8TGe71TUoLyK1hZ5PMDB1MpllMcc8rBGd+gX6WNz4m+JfFHxF+G/ivwn/wqXxvp/8Abuk3el/a/tGhS+R58LxeZs/tRd23fnGRnGMjrWZ48n8Q+N9V0u7/AOFTeN9Ojhu7K41BIG8OtJfpZ3SXlohmOo718u4j45K7J7ldm+RJYvn7Qvi6IvFV1eaX+0PYpqOs/wBuG9N9reg6dazPYapDZ6dJJINOmVJJrF5H8zymacQQgERxqE+1PhLaS6f8OtEs573xHqE9rCbaSfxasf8Aam5HZCs7RqqSMpXaJU3LIFEgeUOJGTXKTJOH9Mw/+Fr+KP8AojPjf/wM0L/5Z1xEWreOb7xna6vr/wAOfG+tadpF3NfaHYgaBbyWs0scsTtPKmqYn8uKeaKIBIwqSN5onkCyr0vxn1v+1PGfw38DNYXxstY8Q2t3e6mkO2GD7HHcalbRJKxw0jz6agZVV9sQk3+U0sLN82aL8T08d6L8P18eax8U/H9lqfhN/E15omneGrywdtXt20+W3NjLYWdq0sYeafa7TPCrfZ2Z1by3KSuEY3V7Ht3jPXfiBrHi/SvE+gfDPxTpOrabpN9pcA1KHRb2A/abixlaRkTWYWO1bJlADDmUNn5NrcRodt8cPDni/WPEOneDPsdzqtpBaXFtD4V0tIP3Vxd3BlCr4nB8ySW+nZ2JO4kHg7i3b/EjxvP48+JvhHRfB0+da0LSdQ8Xwx3ekyu63iQ21tDaSxSy2wEj2uqzs0DyxSRs9q8hRDtlw9Eh8eabY+Hb3w78T/Dg0v4k65HqemS2ngacQwl7E30gWOXUwYobhLKZ5BtMhlu5XyjPvRrYadl0Ov8Aib4l8UfEX4b+K/Cf/CpfG+n/ANu6Td6X9r+0aFL5HnwvF5mz+1F3bd+cZGcYyOtdJ/wtfxR/0Rnxv/4GaF/8s68s+KPi7xJ8Pvj94dls/FfhzWPEmqQvbReCtO0GSO/vtI+1RvullOoYeaILMkEjRiNWuLp2WKAXM0HX+A/iDo/hj4wfFfR9am/sf+0vFlpFp1/fOkdre3LaLpS/ZI5C3/Hx91hEwBkDEx+Z5cvlq2hNtNvzOQ1BfiZ4+gSx+IPgrxhqejRTRXC6Z4Vh0fRVnljkWWJ5pzrc9wGiljikjNvLAQynf5gIUWvDmrfFH4bWlvpfhf4c+KdS8J6daNFYeH9dGhrPCEiKW1rFfw6oPLt02wjdLb3E2A5aRyy7e3/4W7rHnf8ACS/ZrH/hBf8AhIf+EU+x+W/9p/af7R/s37X5m/y/L+1/J5G3PlfvvN3/AOjV65Sbt0E5Nbo+fvgr4h+IHw6+GWjaBr/w3+IvibVrbznn1HUtY0W8nbzJpJVjad9RVpvLV1iEhRNwjDbI87Fs+EfEPjTTdSl17xL8LPGHiDxVLCbUXtudEtba0t9ykw2sDavIYlcojyMZHeR1Xc2yOGOL3iilzeRPNfofOukzeNNE+Bej/Dqx+Hfj6xnsdDtdCbXbSfRIrgRRxJDLNABq2YZiiuY23MI3KsRIFKtZ8Vz+Idch8GW+j/Cbxv4VtvC93JcWaaY3h39yh067sY0hVtRMcfli6DrlHX90FKEHj6Boo5h8/keI/DvxL4o8B+F00t/hL43v7mS7vNRurkXGhRJJc3VzLdTmNP7UYpH5sz7ELOVXaC7kFjw954U8Q3vwT8PfD5vhl43hk03w8vhe51iJPDpmurB7ZLe7jXfqbND5ioki7X+WWGBnEqI0b/U1FHMHP1sea/8AC1/FH/RGfG//AIGaF/8ALOuI8Q6t458VeJIm1T4c+N7rwjFd2uqJoeNASYXlu8ckI+0rqgP2dZYo5/L2eYZV5mMJMB+gaKV7dBKVuh4P4/8AEPjTxbeeF7/TvhZ4w0zUPD+oz6nbtdHRLmKSV9Pu7RA6Lq8Z2qbsSEBgWEZXK7ty+fm2+OC+PrbxfD4M+y6tFaXdpJ5HhXS0S5+0Gz3yy48T7nkC6fborE8KuDnC7friimpW6DU7dDwfWPEPjTxFeeAb/UfhZ4wOoeGtROp3LWp0SOK8lbT7q0cIjauxiXN2ZAC0hAQLk53C1YeJfFFj8SNd8Wf8Kl8bv/amk6fpf2T7RoQ8r7LNey+Zv/tTnd9txjAx5ecndge3UUc3kLm8j5Z8T+FfFfiq/wDEUreD/inoltq/iG18RG30aXwsMTW0Gnpbh2uLyYtsl05JRt2A+YVdXA5xPhv8INY+FviHStW0bwz8aGfToVtVtrq88HvFLbiGxgaF8ShtrRaZZIWVlfERIYM7s32DRT53sV7R2tY+WfGng7xJ4xk8cRJ4V+MOh6T4yz/a+k6bdeETBLus4rN9rTTySpuhgQHEnByRjNafhyDx5ovxI07xZqXhj4p+K/sWk3ulx2msnwonl/aJrSUyI9rdwYx9kAIcPncCCm0h/pOilzeQufpY+UPhH4R8b/C/UvBtzd+F/iZ4qg8N+GJfDcFlfr4XhijV2sjvhMN8jqoFkBtlaZsMvz5Vi/b+Cda8W+GdS1PWNU+GPj7xF4h1CGCyl1Kebw/ATaW7Sm2i8uPUgm4GeZ3cAb5JpCBHH5UMXvFFDlfoDnfdHyhYfCy2m8E6DoWvfBz4mapPYeGLLwre3Nh4lsdLi1K0to3RVmgt9bVHUmWY7X3YErDJFaWo6d401rwb8YdEvvhv4wM/xBmvGW6t49ERdPil06GwiUodYYysiW6MzbkDsThUGAPp2inzMPaM+UPiRF8ZPiDfRufAs9nBZ6jb3mnyv4b0qa8t4ob63vEgaf8A4SRQys9pbiTaiB9gICkLt9K8I/Ev4mWWmyp4o+F/iPWNQMxaOfSINH0+JYsLhTHJrc5LZ3HdvAIIG0YJPstFLm6WBzurWPNf+Fr+KP8AojPjf/wM0L/5Z0f8LX8Uf9EZ8b/+Bmhf/LOvSqKV/Im67Hmv/C1/FH/RGfG//gZoX/yzo/4Wv4o/6Iz43/8AAzQv/lnXpVFF/ILrsea/8LX8Uf8ARGfG/wD4GaF/8s64j4v/ABB17XPDuhWV78MvFPh62l8WeG9+palc6S8EONbsiNwgvpZDkgKNqHlhnAyR9A15r+0F/wAiHpf/AGNnhn/0+2NNPXYqLV1oaeqfEHXtPtLWaD4ZeKdTkmxvgtbnSVeD91E/zmS+RT80jx/KW+aCQ/cMbyFdvRSv5E3XY+Qv2jvF/gn4j+HV8Bt8X9K0mDU7E6TqljLrPh/+ztMljI3TXcd0j3ZmUk7I4CD5kCAvbkmYcbpfgn4LeD/jF4a1zwz8cvC2jW1ppOpLLrOmzeELWe2uXks1hRVjsVB3xfawXKMVClQyCRlk+qrjxfBZ+MvAOgWni3Q7PUrm3d7zwzfXkS3l7Zm2kZJ7eLHmtIk0CjORH5ZudwZlQp8q3H7U3x117wVrA0/TPs3ieDdZz2Fh8MdbknsJm0VbxSZHmeNZBdyx2oWRCCGS4KmJsHfW7SOlXd0v6/A931D4x/CvxF4sS91341eAb/w9YzRXWmaHBrFrEqXChSJrpzcsLlo3XfEoWNI2IcrJJHFJH5/4L8XfDq2+Dvw3tLb46eFvh7450jw9pOk6nf6Zr2lXTyQwRx+daSJK0kMmD53ly4YxM7MhKSSpL2/jj4rfEjRvi54R8D6XZ+Fry5PlXN5dTanc2San5ljebLcxfYrg2u+W1u50Kyy4XTykjqZkD+a2n7Wuvav8V9Ls5/iB8OtD8GweIbv7Xd/b9Jkjn0lBci3/AHw1l5mklAtjxaxFHbJyiNHJCRKi7f1/kddqf7T3w48HeNrvWH8R6V8QdUuoXjt9S0nxNoNvbabaNISLOGO61GJ1YiOJ5ZAD5z7CWCxxQwc38Jf2u/DXhWztNDvIdKggv/E+rXt5qM/jbw6IrK0vNQu7qOXamou8jIJoVdFXgeYVLlVV/U/jb8ZfF/hXwZ4mh0T4d+KbXVpc6Romuedo72pv7iQWtjLse9L+W1xLCfni4DZdRggdJb/FDxfea1o9onwe8U2dlc3aw31/f6jo6pZQlW/fBIr6RpMPsygAO0uw3MoR1pbb8SdLbfifNmu+L/hZ4T8X6hd6Z4+sdc01rTTCt5oHi3w/FqV1eG41yXUZGkuZ4vs3mf2l80lqYZF+07YCihgu58CrP9nv4Z6lZ+I7vxb8JdM8RWMMtppkWka3p8o063djkG72Qy3czJhPPlQOIwE+Z2uJrnpNH/ael8S/HTUdN0/xf4P1Pw7punIdP8N+E7yPWtR8SzXEtwqGOXdCLeaEW0TPHiSKOO4d5ZQm2SLuP2fviH488cPqqeJdI0p9It5riSHX7G/nJeWS5kdLAW81jbsGtYikMsh5Ekexh5qzpDTvYqTaWpmaf8a/hX4X8WPdaF8W/AMfh7U5pZ9T0mfxLaqsFwwZzd2uHIVpH4lhOEdnMwKSCUXJp/xr+FfhfxY91oXxb8Ax+HtTmln1PSZ/EtqqwXDBnN3a4chWkfiWE4R2czApIJRc+p+DfGX/AAkn2ywv7P8AsfxLpuxdR0lpfM8rdu8uaKTC+dbybHMcoUZ2urLHLHLFGeDfGX/CSfbLC/s/7H8S6bsXUdJaXzPK3bvLmikwvnW8mxzHKFGdrqyxyxyxR5mV12Oa/wCGmfg//wBFX8Ef+FHZ/wDxyvP/AImftDfCu/8AGnwmntviZ4PuYLLxPPcXUkWvWrLbxHRtTjDuRJhVLyRpk4G51HUivZfBvjL/AIST7ZYX9n/Y/iXTdi6jpLS+Z5W7d5c0UmF863k2OY5QoztdWWOWOWKPmviv/wAj58Gf+xsuP/TFq1NWuCsnseNR+JPgnL4n8baUvxL8H6X4V1TwxpOn2eo2viuya7jvobzVLiS5SR5Xk+1JJcwXAuHBYzMJNzOGI6X4S/Hr4eabeeONY8QfEfwDpN54h1xNQWxg8W2VyIVj0+zs2/eB1DKz2kjocBjG8ZdY3Lxppan8cNdn+JWqWPhGDSvFGnvrlt4Mt7O91MWcNvqkNhe6jfymeKCdivlfZINhGRLFKCqbSz7nwg8Z+KfGviC81bX9a0PTbK6/tDTrXwXaRGae3m06/ktLm7S9Zka4jd9u4G3QKHtx8rbzK3tqW9tTzX4neM/2b9Q1q78Y3svw6+JuuXfkW11b6l4m026nito1kCCzjvZ/s8eHcM6K8AYNI5Luqo/S/Bj4sfB/4X/D2z0D/haHw6tNt3fX32LTPEFmtrZ/arua6+zQ/OuY4vO8pW2JuEYbYmdorav8YvHeoweNbbwn4f1XXtVutRv28KfZ59JhjiXTpIrK4guY7i5jlaFr6CYyPGrsIL2LbJHIQsfXQ/Ga91b/AISyDWvDGufD3Q9LtEin8S3F9pd3Jp91Jt3CWG3muRB5cU1vceZMpjCF3lCIgMg9rA9rfqfNl38fvD+i/AzwB4a0vU7H/hOfBnh6D+ytUsfF/hk2Eerf2LLZDzBNqG5443upM/u8FowRvT7/AKl4V+N3wM8Y+CbHwfquraV4P8M6DDbW1npmq+N9MMV5BHG0QgkFnqMxuIQgCvFc5SQMu5Xwcblx8YPiPpniSxtbPwd/wnFy3h64S7t9D1fSoLC41i1eFJms2muluVt0mmnt52mjZo2jtwqZL+ZuaB8YtZ0f4A6v4w1nw/qt7P4d8Mf2t/ad/PpscXiFo7VpWmhNjc3KRLIYw390CVdu8A4bG9Vt+Jh6R8dvhha/GzxXr8vxO8ELpN94e0ext7j/AISaxO+aC51N5V2+buG1bmE5IAO/gnBwal+1D8IvhdYQWXhnW9D8S215d3t9OmjeLNHHkTTztcSs5vL+E/vJZpWATcBgjCjaD6Vq/iPUbX42eFNAiuNuk33h7WL64t9infNBc6YkTbsbhtW5mGAQDv5BwMaXwy8Zf8LF+G/hTxZ9j/s/+3dJtNU+yeb5vkefCkvl78Lu278ZwM4zgdKnTci63sfLNh8S9A8P/wBm3lx8TPhZrHhbTLs3tp8N7HxdbiPTivlmI297KUW68pone3tZoreGJ7lQJUW1t2Trpf22vCmp/EXwFpmneK/B+kaNeQ3tz4mt9b1i1a5sIVR1tGiuoLh7Ms0yAPEJZJdksbbAA7J9A+LrTxJe6bGnhfVtK0fUBMGkn1fS5NQiaLDZURx3EBDZ2ndvIABG05BHxr4S/bJ8VeKtd0N7bxp4c8jxFNp2n2di+h6XI1vLcTiNJGtofErXYYmeMSKUYosQOxCJC1K0i1aetv6+49l+IPx2+GGueLfhle2XxO8ET22jeIZr6+f/AISaxXyYW0nULcNgygt+9uIlwuT82cYBI8s+HvxB0XwroXgez1D4sfDM6z4Q0O1tNKm0/wAW2Z05xBB9mubK6kYJclbtTFOHRXjjktoC0JNqDe/QPxB8T+LvB/hPwpp4uoNZ8Z6vrkFqsujWCWkNzFCZb65hWO4nkEbSWVncQKzSkebIhLRKS8fIr8dvHNr/AGzr9t8NNc1bwtqdpYzeHXuta0CCN7ybdGsP2hL9l+zzMbMxuBLIXnmxuXykAthLbT8ziNN/aM8Oabd/DHxZr3jXwt4j1/TPBF3Y67a6b4p0VJ31O4l0hnVQ91FD1t7pyVYIBEQDkorc14K/aU8D+D/iJf6wIPtekpaXX9lpN4z8LGe2udQ1K5vtTyF1RVMbt9gVNxYqLcjjLNJ7f8TfjL4v8EX+ia3F8O/FLeHLXA1mITaO/nJPADFHbp9t86S8S6MECxplZPMmVBMxgauk8M/EqDX/AI2azoFtr1jfaTL4T0jXtJt7eWJ/PSa5v0nuYmX5pIyqWY3AlRuTGN/zF9Nh302PI9f8X/A7Vfinpd2fH3gibQLnSdaOqXh8W2onN/cXelS28gk8/wA4SKLI+VIhHkC2hVDGEiA3PB3xj+EkXiX4lTa58RPAM2n6t4ntNW08XHiLT5lkWHTdNjSYL5p2slxauVyAwaIMP4SfU/Efxd0fwzrVxZzW19c2Gnbf7b1m2jRrLRN6ho/tblwy5Vldtiv5MbLLN5UTLIe3qbkOWmqPln/hPfhv53/CNf8AC4Ph1/wgv/CQ/wDCV/bP+Emtv7T+0/2j/aX2Ty93l+X9r+fz92fK/c+Vv/0mvXP+Gmfg/wD9FX8Ef+FHZ/8AxyvSqKTaZLkmea/8NM/B/wD6Kv4I/wDCjs//AI5R/wANM/B//oq/gj/wo7P/AOOV6VRS0F7vY81/4aZ+D/8A0VfwR/4Udn/8co/4aZ+D/wD0VfwR/wCFHZ//AByvSqKNA93sea/8NM/B/wD6Kv4I/wDCjs//AI5R/wANM/B//oq/gj/wo7P/AOOV6VRRoHu9jzX/AIaZ+D//AEVfwR/4Udn/APHKP+Gmfg//ANFX8Ef+FHZ//HK9Koo0D3ex5r/w0z8H/wDoq/gj/wAKOz/+OUf8NM/B/wD6Kv4I/wDCjs//AI5XpVFGge72PNf+Gmfg/wD9FX8Ef+FHZ/8Axyj/AIaZ+D//AEVfwR/4Udn/APHK9Koo0D3ex5r/AMNM/B//AKKv4I/8KOz/APjlH/DTPwf/AOir+CP/AAo7P/45XpVFGge72PNf+Gmfg/8A9FX8Ef8AhR2f/wAco/4aZ+D/AP0VfwR/4Udn/wDHK9Koo0D3ex5r/wANM/B//oq/gj/wo7P/AOOUf8NM/B//AKKv4I/8KOz/APjlelUUaB7vY81/4aZ+D/8A0VfwR/4Udn/8co/4aZ+D/wD0VfwR/wCFHZ//AByvSqKNA93sea/8NM/B/wD6Kv4I/wDCjs//AI5R/wANM/B//oq/gj/wo7P/AOOV6VRRoHu9jzX/AIaZ+D//AEVfwR/4Udn/APHKP+Gmfg//ANFX8Ef+FHZ//HK9Koo0D3ex5r/w0z8H/wDoq/gj/wAKOz/+OUf8NM/B/wD6Kv4I/wDCjs//AI5XpVFGge72PNf+Gmfg/wD9FX8Ef+FHZ/8AxyuI+L/xz+G/jHw7oWj6B8QfC2uatc+LPDfkWGm61bXE8u3W7Jm2xo5ZsKrMcDgAntX0DXmv7QX/ACIel/8AY2eGf/T7Y01a5UbXRp6p8c/hvodpa3Wo/EHwtp9tdY+zzXWtW0STZiimGxmcBv3VxBJx/DNG3R1JK7eiloToeK/FBNR1J/ATabZa55fhtzreoalpNmssltDLp15YqbZZFZbi4Rroz+SiSHZbvlC8kEU/hlh4e/Zv8R+PtUvddl8EeGtJhu4pLrTfF1/pr6xqd9AcedMZne6to22xNNDO6zTSo3nRQ/6SLz6Ptvgb4c1e2ivp9S8YRz3SCeRLXxtrNvErMMkJFHdqiLk8KgCgYAAAAqT/AIZ98L/9BTxv/wCF7rv/AMmVo5JNm3Ok2eI/tEeAYPHXjzwHr2j+APh1rltrWrNNZ+JJbaLWLrXEXQr6WOGa2ZLeOSNhEPLc3u0GOBzgDC8RonhL4peE/jN4M1WbwlfWn9oeN9dv9P0zxDrTQ2A+1W+r3Cqz2+pXsSSCGRmPl6enzBlMvLNJ9S/8M++F/wDoKeN//C913/5Mo/4Z98L/APQU8b/+F7rv/wAmUc6tYFUSVv6/M82/aD0SR/Fvw51rxpf65/Zv/CWT2lppXg6bUfMt7b+ydSKy/wCghbia4kZI2dlGIkzGvy+fLcVfAmn+Er39pjwhN4ffx8r2nhjXJ3Hi248QRqzG40uNQi6kwEi4eQsqhlDCJmG5IiPU/wDhn3wv/wBBTxv/AOF7rv8A8mUf8M++F/8AoKeN/wDwvdd/+TKXMrE8ytbU+fvGWgf2F8U/Fl5498ReFvtOqaToo1KLxpq+3w+sc93rbxWwtpo/Lu/sogtjGqi1eVrWSTzITPOJO4/Zq+G3jPTbvQ9TvvGvik+FdFtLuwt9H1SzhsYNTeWUESpZNZwTWdvEI18qGTLRlmiiYW0avd+k/wDDPvhf/oKeN/8Awvdd/wDkyj/hn3wv/wBBTxv/AOF7rv8A8mUOSaG5pqxa8P6ZeeOvFmn+NNStJ9GsdPhmh0OwljaC8limCiSe7yA6K4RClo2Au1JJlMwjjtDw/pl5468Waf401K0n0ax0+GaHQ7CWNoLyWKYKJJ7vIDorhEKWjYC7UkmUzCOO0q/8M++F/wDoKeN//C913/5Mo/4Z98L/APQU8b/+F7rv/wAmVN0RdFrw/pl5468Waf401K0n0ax0+GaHQ7CWNoLyWKYKJJ7vIDorhEKWjYC7UkmUzCOO0q/Ff/kfPgz/ANjZcf8Api1aj/hn3wv/ANBTxv8A+F7rv/yZXEfEH4I+ENP8W/DKCa78b3El94hmt4ZP+E81g+Q40nUJC/z3DsPljZf3bRt8/LlN8cjVhqzZxHinwbo7+K9T02TwJ/wlXhbS/ibbrJ4csNHS7gWIeDIYbdDCR5UcYme3QPIUijJQsyKNwPhb4V8C+Dte8NabB8NtDt5fGerahFpXibQbQ21zpcctjd3F9aG9WCGeC4triK5tUiK2zrA0QGZILhE9u/4Z98L/APQU8b/+F7rv/wAmUf8ADPvhf/oKeN//AAvdd/8AkynzK1iudWseNeH9e8B+Dfh5oejP4w8H+A9Z8PePdW1PSrLVtTgsFt7FfEF/bXIihYgbXsnvYEG3aGYYKFA62fCPx30dv2efG3jnwf4u8Lap8SLzSbnx5qOkSXKXr222CNltJreGaNx5FtHbWRkGzLRrI6F2ZW9c/wCGffC//QU8b/8Ahe67/wDJlH/DPvhf/oKeN/8Awvdd/wDkyjmiHNFny18S7rxh8KvFGr6d8KZPiLbx2ukxWk9/F4Lmv31XUYbbV2eWW4n0+TfvvF05maJlidr+7mHzyyyj1LwjqGp3v7MfxbsrLTPEeoeKxD4iuY4fEHhae2OotLJdizZLSW1jt5WmiSF5IoYtrSSu0qeZM+71P/hn3wv/ANBTxv8A+F7rv/yZR/wz74X/AOgp43/8L3Xf/kym5Jg5xaPCNT8L/BSX4teG763+C848Mw6HqkF8i/CfUFiN28+nm2LRfYMswSO7w2DtBcZG/Dek/D741Wfhn4T+F9Ru9G1W50vU/GV34S06LTNIW1XS7c6tdWdgLiBhEbaGNI7eE7lDhiilSxNdd/wz74X/AOgp43/8L3Xf/kys2/8A2V/h/qmtaXrF6PFN5q2leb/Z9/P411p57PzV2y+VIbvdHvUBW2kbgMHNK8XuJyi1Z3NL9oV5/wDhXMEEF7faf9s8Q6BYzT6beS2k/kz6xZwzKs0TK6bo5HUlWBwx5rwjTPh345074izN4ptPEej/AA6tdR1Jr7WJ/G2qQRWulxJctbXP2r/hIXcswS2LhrSMKJJMlQmT7v8A8M++F/8AoKeN/wDwvdd/+TKP+GffC/8A0FPG/wD4Xuu//JlJSSVgjJRVkeR6G+nHwd+yx8QPEd75mrC0tjfa7q94zeVCfDOpTzyM8jbY97APLJwX8qMuW8pNuafix8N4fH1t4Um+KHgg+BLrxDd+M42g8QW0iR+SbOdLOWQuCkkmq3NxfKQ7fLa+UAY2ZI/bv+GffC//AEFPG/8A4Xuu/wDyZR/wz74X/wCgp43/APC913/5Mp8yHzx6nn/xv8C2fxW8VfC66u/E0+peHdb1yWDTI9ImVbRLWTQdSkMpGXivGkdQcyq8JhxF5RSS4+0aWofD2L4hfFrxroviC+nh1RfBvh1l1zQHk065s7vz9bRrmzcO7wNh5ABvf5HZHMis4brv+GffC/8A0FPG/wD4Xuu//JlH/DPvhf8A6Cnjf/wvdd/+TKXMieZWtc4j4i+GdYOnfGfwdDpN9eX/AMSvN/sS9trZ5LKLzdIttPk+1zgbbfyWt2mbfjfG6iHzpd0S/QNea/8ADPvhf/oKeN//AAvdd/8Akyj/AIZ98L/9BTxv/wCF7rv/AMmUm0xNpnpVFea/8M++F/8AoKeN/wDwvdd/+TKP+GffC/8A0FPG/wD4Xuu//JlLQn3e56VRXmv/AAz74X/6Cnjf/wAL3Xf/AJMo/wCGffC//QU8b/8Ahe67/wDJlGge73PSqK81/wCGffC//QU8b/8Ahe67/wDJlH/DPvhf/oKeN/8Awvdd/wDkyjQPd7npVFea/wDDPvhf/oKeN/8Awvdd/wDkyj/hn3wv/wBBTxv/AOF7rv8A8mUaB7vc9KorzX/hn3wv/wBBTxv/AOF7rv8A8mUf8M++F/8AoKeN/wDwvdd/+TKNA93uelUV5r/wz74X/wCgp43/APC913/5Mo/4Z98L/wDQU8b/APhe67/8mUaB7vc9KorzX/hn3wv/ANBTxv8A+F7rv/yZR/wz74X/AOgp43/8L3Xf/kyjQPd7npVFea/8M++F/wDoKeN//C913/5Mo/4Z98L/APQU8b/+F7rv/wAmUaB7vc9KorzX/hn3wv8A9BTxv/4Xuu//ACZR/wAM++F/+gp43/8AC913/wCTKNA93uelUV5r/wAM++F/+gp43/8AC913/wCTKP8Ahn3wv/0FPG//AIXuu/8AyZRoHu9z0qivNf8Ahn3wv/0FPG//AIXuu/8AyZR/wz74X/6Cnjf/AML3Xf8A5Mo0D3e56VRXmv8Awz74X/6Cnjf/AML3Xf8A5Mo/4Z98L/8AQU8b/wDhe67/APJlGge73PSqK81/4Z98L/8AQU8b/wDhe67/APJlH/DPvhf/AKCnjf8A8L3Xf/kyjQPd7npVFea/8M++F/8AoKeN/wDwvdd/+TKP+GffC/8A0FPG/wD4Xuu//JlGge73PSq81/aC/wCRD0v/ALGzwz/6fbGj/hn3wv8A9BTxv/4Xuu//ACZVa9/Z28OSvp80F94juJ7LUbPUI49a8V6zqNsWguY5hugkvdjMDHlSwZVcKxVwpVmrJjXKnc9ToriNU+D2g6xaWtvPf+KY47bGw2vi7VrdziKKL53juVZ/lhQ/MT8xkf78sjMUtBaH/9k=" alt="" />

4.简单的程序实例

JAVA:二进制(原码 反码 补码),位运算,移位运算,约瑟夫问题(5)
public class Demo1 {
public static void main(String[] args) {
System.out.println(~2);
System.out.println(2&3);
System.out.println(2|3);
System.out.println(~-5);
System.out.println(13&7);
System.out.println(5|4);
System.out.println(-3^3);
}
}
JAVA:二进制(原码 反码 补码),位运算,移位运算,约瑟夫问题(5)

运行结果:

-3
2
3
4
5
5
-2

JAVA:二进制(原码 反码 补码),位运算,移位运算,约瑟夫问题(5)
public class Demo2 {
public static void main(String[] args) {
System.out.println(1>>2);
System.out.println(-1>>2);
System.out.println(1<<2);
System.out.println(-1<<2);
System.out.println(3>>>2);
}
}
JAVA:二进制(原码 反码 补码),位运算,移位运算,约瑟夫问题(5)

运行结果:

0
-1
4
-4
0

二.约瑟夫问题

约瑟夫问题: 设编号为1,2,3...n的n个人围坐一圈, 约定编号为k(1<=k<=n)的人从1开始报数, 数到m的那个人出列, 它的下一位又从1开始报数, 数到m的那个人又出列, 依次类推, 直到所有人出列为止, 由此产生一个出队编号的序列.

JAVA:二进制(原码 反码 补码),位运算,移位运算,约瑟夫问题(5)
public class Demo3 {
public static void main(String[] args) {
CycleLinkList cycleLinkList=new CycleLinkList();
cycleLinkList.setCycleLinkListLength(10);
cycleLinkList.initCycleLinkList();
cycleLinkList.Josephu(4, 6);
}
} /**
* 节点结构
*/
class Node {
//编号
private int number;
//指向下一个节点的引用
private Node nextNode=null; //构造函数
public Node(int number) {
this.number=number;
} //设置nextNode节点
public void setNextNode(Node nextNode) {
this.nextNode = nextNode;
} //得到nextNode节点
public Node getNextNode() {
return nextNode;
} //得到编号
public int getNumber() {
return number;
}
} /**
* 循环链表
*/
class CycleLinkList {
//链表的长度
private int length=0;
//指向链表头结点的引用
private Node firstNode=null; /**
* 设置链表的长度
* @param len 链表长度
*/
public void setCycleLinkListLength(int len) {
this.length=len;
} /**
* 初始化循环链表
*/
public void initCycleLinkList() {
//定义一个临时节点
Node tempNode=null;
for(int i=1;i<=length;i++) {
//头节点
if(1==i) {
Node headNode=new Node(i);
this.firstNode=headNode;
tempNode=headNode;
}else {
//尾节点
if(length==i) {
Node node=new Node(i);
tempNode.setNextNode(node);
tempNode=node;
//将尾节点的nextNode引用指向链表的头节点firstNode
tempNode.setNextNode(firstNode);
}else { //其它节点
Node node=new Node(i);
tempNode.setNextNode(node);
tempNode=node;
}
}
}
} /**
* 打印循环链表
*/
public void printCycleLinkList() {
Node tempNode=this.firstNode;
do {
System.out.println(tempNode.getNumber());
tempNode=tempNode.getNextNode();
} while (tempNode!=this.firstNode);
} /**
* 约瑟夫问题
* @param k 从第k个人开始报数
* @param m 数m下
*/
public void Josephu(int k, int m) {
//判断k的合法性
if( !(k>=1 && k<=this.length) ) {
System.out.println("传入的k不正确");
System.exit(-1);
} //定义一个临时节点
Node tempNode=this.firstNode; //先找到第k个人
for(int i=1;i<k;i++) {
tempNode=tempNode.getNextNode();
} //数m下,将数到m的节点从循环链表中删除
//有两种情况需要考虑,
//第一种:m=1的情形
//第二种:除了第一种的特殊情况,其他的只要找到数到m节点的的前一个节点即可,即数m-1下 //第一种情形
if(1==m) {
//从当前节点依次输出出队序列
int len=this.length;
while( (len--)>0) {
System.out.println(tempNode.getNumber());
tempNode=tempNode.getNextNode();
}
}
//第二种情形
else {
//记录出队的节点数
int cnt=0;
do {
//数(m-1)下
for(int j=1;j<(m-1);j++) {
tempNode=tempNode.getNextNode();
}
//出队的节点
System.out.println(tempNode.getNextNode().getNumber());
//记录出队的节点数
cnt++;
//删除数到m的节点
Node tempNode2=tempNode.getNextNode().getNextNode();
tempNode.setNextNode(tempNode2);
//更新tempNode,从数到m的人下一个开始报数
tempNode=tempNode2;
} while (cnt!=this.length);
}
} }
JAVA:二进制(原码 反码 补码),位运算,移位运算,约瑟夫问题(5)

运行结果:

9
5
2
10
8
1
4
3
7
6

上一篇:各种AJAX方法的使用比较


下一篇:使用VisualVM进行性能分析及调优(转)