HDU4685 Prince and Princess 完美搭配+良好的沟通

意甲冠军:今天,有n王子,m公主。现在给他们配对,与王子会嫁给一个男人,他喜欢。公主无法做出选择。

这标题去咬硬,还有一类似的题目poj1904。那个题目也是给王子与公主配对,但那个是王子公主各n个,且给定了一个完美匹配,然后求每一个王子能够做出的选择且不影响最大匹配数目。那题是先建各条喜欢关系的边。然后在由被选择的公主连一条边到与之配对的王子。强连通之后假设一个王子和一个公主在一个强连通分量中,那么他们结合的话,他们的还有一半也各自能在强连通中找到另外的匹配,就是符合题意的结果了。

这个题目算是升级版把。我们须要做的先是用匈牙利算法求出最大匹配res,然后建立m-res个虚拟王子与m-res单身公主准备匹配,建立n-res个虚拟公主与n-res个单身王子准备匹配。过程就是虚拟王子要喜欢每个公主,相同虚拟公主也要被每个王子喜欢,这样最大匹配一定是n+m-res.求出一个这种完美匹配,然后再套用poj1904的思路用强连通做。建议先做下1904额。

代码:

#include<iostream>
#include<cstdio>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<cstring>
#include<algorithm>
#define rep(i,a,b) for(int i=(a);i<(b);i++)
#define rev(i,a,b) for(int i=(a);i>=(b);i--)
#define clr(a,x) memset(a,x,sizeof a)
#define inf 0x3f3f3f3f
typedef long long LL;
using namespace std; const int eps=0.00000001;
const int maxn=2005;
const int maxm=maxn*maxn/2; int first[maxn],link[maxn];
int nex[maxm],w[maxm],v[maxm],u[maxm];
bool done[maxn],g[maxn][maxn];
int n,m,ecnt; void add_(int a,int b,int c=0)
{
u[ecnt]=a;
v[ecnt]=b;
w[ecnt]=c;
nex[ecnt]=first[a];
first[a]=ecnt++;
}
bool dfs(int s)
{
for(int e=first[s];~e;e=nex[e])
if(!done[v[e]])
{
done[v[e]]=true;
if(link[v[e]]==-1||dfs(link[v[e]]))
{
link[v[e]]=s;
return true;
}
}
return 0;
} int hungary(int n)
{
int ans=0;
clr(link,-1);
for(int i=1;i<=n;i++)
{
clr(done,false);
if(dfs(i))ans++;
}
return ans;
}
int low[maxn],dfn[maxn],stck[maxn],belong[maxn];
int index,top,scc;
bool ins[maxn];
int num[maxn];
int in[maxn],out[maxn]; void tarjan(int u)
{
low[u]=dfn[u]=++index;
stck[top++]=u;
ins[u]=1;
for(int e=first[u];~e;e=nex[e])
{
if(!dfn[v[e]])
{
tarjan(v[e]);
low[u]=min(low[u],low[v[e]]);
}
else if(ins[v[e]])low[u]=min(low[u],dfn[v[e]]);
}
if(low[u]==dfn[u])
{
int v;
scc++;
do
{
v=stck[--top];
ins[v]=false;
belong[v]=scc;
num[scc]++;
}while(v!=u);
}
}
void solve(int n)
{
clr(dfn,0);
clr(ins,0);
clr(num,0);
index=scc=top=0;
for(int i=1;i<=n;i++)
if(!dfn[i])tarjan(i);
} int main()
{
int t,a,b,c,k,cas=1,key=1000;
scanf("%d",&t);
while(t--)
{
clr(first,-1);ecnt=0;
clr(g,false);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&k);
while(k--)
{
scanf("%d",&a);
if(!g[i][a])
{
g[i][a]=1;
add_(i,a+key);
}
}
}
int res=hungary(n);
int nn=n+m-res;
for(int i=n+1;i<=nn;i++)
for(int j=1;j<=nn;j++)
add_(i,j+key),g[i][j]=1;
for(int i=1;i<=n;i++)
for(int j=m+1;j<=nn;j++)
add_(i,j+key),g[i][j]=1;
hungary(nn); ecnt=0;clr(first,-1);
for(int i=1;i<=nn;i++)
if(link[i+key]!=-1)add_(i+nn,link[i+key]); for(int i=1;i<=nn;i++)
for(int j=1;j<=nn;j++)
if(g[i][j])add_(i,j+nn);
solve(2*nn);
printf("Case #%d:\n",cas++);
int ans[1000];
for(int i=1;i<=n;i++)
{
int en=0;
for(int j=1;j<=m;j++)
if(g[i][j]&&belong[j+nn]==belong[i])ans[en++]=j;
printf("%d",en);
for(int i=0;i<en;i++)
printf(" %d",ans[i]);
puts("");
}
}
return 0;
}

版权声明:本文博客原创文章。博客,未经同意,不得转载。

上一篇:详解EBS接口开发之库存事务处理采购接收--补充


下一篇:【剑指offer】面试题26:复杂链表的复制