OpenGL入门学习(五)
在前面绘制几何图形的时候,大家是否觉得我们绘图的范围太狭隘了呢?坐标只能从-1到1,还只能是X轴向右,Y轴向上,Z轴垂直屏幕。这些限制给我们的绘图带来了很多不便。
我们生活在一个三维的世界——如果要观察一个物体,我们可以:
1、从不同的位置去观察它。(视图变换)
2、移动或者旋转它,当然了,如果它只是计算机里面的物体,我们还可以放大或缩小它。(模型变换)
3、如果把物体画下来,我们可以选择:是否需要一种“近大远小”的透视效果。另外,我们可能只希望看到物体的一部分,而不是全部(剪裁)。(投影变换)
4、我们可能希望把整个看到的图形画下来,但它只占据纸张的一部分,而不是全部。(视口变换)
这些,都可以在OpenGL中实现。
OpenGL变换实际上是通过矩阵乘法来实现。无论是移动、旋转还是缩放大小,都是通过在当前矩阵的基础上乘以一个新的矩阵来达到目的。关于矩阵的知识,这里不详细介绍,有兴趣的朋友可以看看线性代数(大学生的话多半应该学过的)。
OpenGL可以在最底层直接操作矩阵,不过作为初学,这样做的意义并不大。这里就不做介绍了。
1、模型变换和视图变换
从“相对移动”的观点来看,改变观察点的位置与方向和改变物体本身的位置与方向具有等效性。在OpenGL中,实现这两种功能甚至使用的是同样的函数。
由于模型和视图的变换都通过矩阵运算来实现,在进行变换前,应先设置当前操作的矩阵为“模型视图矩阵”。设置的方法是以GL_MODELVIEW为参数调用glMatrixMode函数,像这样:
glMatrixMode(GL_MODELVIEW);
通常,我们需要在进行变换前把当前矩阵设置为单位矩阵。这也只需要一行代码:
glLoadIdentity();
然后,就可以进行模型变换和视图变换了。进行模型和视图变换,主要涉及到三个函数:
glTranslate*,把当前矩阵和一个表示移动物体的矩阵相乘。三个参数分别表示了在三个坐标上的位移值。
glRotate*,把当前矩阵和一个表示旋转物体的矩阵相乘。物体将绕着(0,0,0)到(x,y,z)的直线以逆时针旋转,参数angle表示旋转的角度。
glScale*,把当前矩阵和一个表示缩放物体的矩阵相乘。x,y,z分别表示在该方向上的缩放比例。
注意我都是说“与XX相乘”,而不是直接说“这个函数就是旋转”或者“这个函数就是移动”,这是有原因的,马上就会讲到。
假设当前矩阵为单位矩阵,然后先乘以一个表示旋转的矩阵R,再乘以一个表示移动的矩阵T,最后得到的矩阵再乘上每一个顶点的坐标矩阵v。所以,经过变换得到的顶点坐标就是((RT)v)。由于矩阵乘法的结合率,((RT)v) = (R(Tv)),换句话说,实际上是先进行移动,然后进行旋转。即:实际变换的顺序与代码中写的顺序是相反的。由于“先移动后旋转”和“先旋转后移动”得到的结果很可能不同,初学的时候需要特别注意这一点。
OpenGL之所以这样设计,是为了得到更高的效率。但在绘制复杂的三维图形时,如果每次都去考虑如何把变换倒过来,也是很痛苦的事情。这里介绍另一种思路,可以让代码看起来更自然(写出的代码其实完全一样,只是考虑问题时用的方法不同了)。
让我们想象,坐标并不是固定不变的。旋转的时候,坐标系统随着物体旋转。移动的时候,坐标系统随着物体移动。如此一来,就不需要考虑代码的顺序反转的问题了。
以上都是针对改变物体的位置和方向来介绍的。如果要改变观察点的位置,除了配合使用glRotate*和glTranslate*函数以外,还可以使用这个函数:gluLookAt。它的参数比较多,前三个参数表示了观察点的位置,中间三个参数表示了观察目标的位置,最后三个参数代表从(0,0,0)到 (x,y,z)的直线,它表示了观察者认为的“上”方向。
2、投影变换
投影变换就是定义一个可视空间,可视空间以外的物体不会被绘制到屏幕上。(注意,从现在起,坐标可以不再是-1.0到1.0了!)
OpenGL支持两种类型的投影变换,即透视投影和正投影。投影也是使用矩阵来实现的。如果需要操作投影矩阵,需要以GL_PROJECTION为参数调用glMatrixMode函数。
glMatrixMode(GL_PROJECTION);
通常,我们需要在进行变换前把当前矩阵设置为单位矩阵。
glLoadIdentity();
透视投影所产生的结果类似于照片,有近大远小的效果,比如在火车头内向前照一个铁轨的照片,两条铁轨似乎在远处相交了。
使用glFrustum函数可以将当前的可视空间设置为透视投影空间。其参数的意义如下图:
声明:该图片来自www.opengl.org,该图片是《OpenGL编程指南》一书的附图,由于该书的旧版(第一版,年)已经流传于网络,我希望没有触及到版权问题。也可以使用更常用的gluPerspective函数。其参数的意义如下图:
声明:该图片来自www.opengl.org,该图片是《OpenGL编程指南》一书的附图,由于该书的旧版(第一版,年)已经流传于网络,我希望没有触及到版权问题。
正投影相当于在无限远处观察得到的结果,它只是一种理想状态。但对于计算机来说,使用正投影有可能获得更好的运行速度。使用glOrtho函数可以将当前的可视空间设置为正投影空间。其参数的意义如下图:
声明:该图片来自www.opengl.org,该图片是《OpenGL编程指南》一书的附图,由于该书的旧版(第一版,年)已经流传于网络,我希望没有触及到版权问题。
如果绘制的图形空间本身就是二维的,可以使用gluOrtho2D。他的使用类似于glOrgho。
3、视口变换
当一切工作已经就绪,只需要把像素绘制到屏幕上了。这时候还剩最后一个问题:应该把像素绘制到窗口的哪个区域呢?通常情况下,默认是完整的填充整个窗口,但我们完全可以只填充一半。(即:把整个图象填充到一半的窗口内)
声明:该图片来自www.opengl.org,该图片是《OpenGL编程指南》一书的附图,由于该书的旧版(第一版,年)已经流传于网络,我希望没有触及到版权问题。
使用glViewport来定义视口。其中前两个参数定义了视口的左下脚(0,0表示最左下方),后两个参数分别是宽度和高度。
4、操作矩阵堆栈
介于是入门教程,先简单介绍一下堆栈。你可以把堆栈想象成一叠盘子。开始的时候一个盘子也没有,你可以一个一个往上放,也可以一个一个取下来。每次取下的,都是最后一次被放上去的盘子。通常,在计算机实现堆栈时,堆栈的容量是有限的,如果盘子过多,就会出错。当然,如果没有盘子了,再要求取一个盘子,也会出错。
我们在进行矩阵操作时,有可能需要先保存某个矩阵,过一段时间再恢复它。当我们需要保存时,调用glPushMatrix函数,它相当于把矩阵(相当于盘子)放到堆栈上。当需要恢复最近一次的保存时,调用glPopMatrix函数,它相当于把矩阵从堆栈上取下。OpenGL规定堆栈的容量至少可以容纳32个矩阵,某些OpenGL实现中,堆栈的容量实际上超过了32个。因此不必过于担心矩阵的容量问题。
通常,用这种先保存后恢复的措施,比先变换再逆变换要更方便,更快速。
注意:模型视图矩阵和投影矩阵都有相应的堆栈。使用glMatrixMode来指定当前操作的究竟是模型视图矩阵还是投影矩阵。
5、综合举例
好了,视图变换的入门知识差不多就讲完了。但我们不能就这样结束。因为本次课程的内容实在过于枯燥,如果分别举例,可能效果不佳。我只好综合的讲一个例子,算是给大家一个参考。至于实际的掌握,还要靠大家自己花功夫。闲话少说,现在进入正题。
我们要制作的是一个三维场景,包括了太阳、地球和月亮。假定一年有12个月,每个月30天。每年,地球绕着太阳转一圈。每个月,月亮围着地球转一圈。即一年有360天。现在给出日期的编号(0~359),要求绘制出太阳、地球、月亮的相对位置示意图。(这是为了编程方便才这样设计的。如果需要制作更现实的情况,那也只是一些数值处理而已,与OpenGL关系不大)
首先,让我们认定这三个天体都是球形,且他们的运动轨迹处于同一水平面,建立以下坐标系:太阳的中心为原点,天体轨迹所在的平面表示了X轴与Y轴决定的平面,且每年第一天,地球在X轴正方向上,月亮在地球的正X轴方向。
下一步是确立可视空间。注意:太阳的半径要比太阳到地球的距离短得多。如果我们直接使用天文观测得到的长度比例,则当整个窗口表示地球轨道大小时,太阳的大小将被忽略。因此,我们只能成倍的放大几个天体的半径,以适应我们观察的需要。(百度一下,得到太阳、地球、月亮的大致半径分别是:696000km, 6378km,1738km。地球到太阳的距离约为1.5亿km=150000000km,月亮到地球的距离约为380000km。)
让我们假想一些数据,将三个天体的半径分别“修改”为:69600000(放大100倍),15945000(放大2500倍),4345000(放大5000倍)。将地球到月亮的距离“修改”为38000000(放大100倍)。地球到太阳的距离保持不变。
为了让地球和月亮在离我们很近时,我们仍然不需要变换观察点和观察方向就可以观察它们,我们把观察点放在这个位置:(0, -200000000, 0) ——因为地球轨道半径为150000000,咱们就凑个整,取-200000000就可以了。观察目标设置为原点(即太阳中心),选择Z轴正方向作为 “上”方。当然我们还可以把观察点往“上”方移动一些,得到(0, -200000000, 200000000),这样可以得到45度角的俯视效果。
为了得到透视效果,我们使用gluPerspective来设置可视空间。假定可视角为60度(如果调试时发现该角度不合适,可修改之。我在最后选择的数值是75。),高宽比为1.0。最近可视距离为1.0,最远可视距离为200000000*2=400000000。即:gluPerspective (60, 1, 1, 400000000);
现在我们来看看如何绘制这三个天体。
为了简单起见,我们把三个天体都想象成规则的球体。而我们所使用的glut实用工具中,正好就有一个绘制球体的现成函数:glutSolidSphere,这个函数在“原点”绘制出一个球体。由于坐标是可以通过glTranslate*和glRotate*两个函数进行随意变换的,所以我们就可以在任意位置绘制球体了。函数有三个参数:第一个参数表示球体的半径,后两个参数代表了“面”的数目,简单点说就是球体的精确程度,数值越大越精确,当然代价就是速度越缓慢。这里我们只是简单的设置后两个参数为20。
太阳在坐标原点,所以不需要经过任何变换,直接绘制就可以了。
地球则要复杂一点,需要变换坐标。由于今年已经经过的天数已知为day,则地球转过的角度为day/一年的天数*360度。前面已经假定每年都是360天,因此地球转过的角度恰好为day。所以可以通过下面的代码来解决:
glRotatef(day, 0, 0, -1);
/* 注意地球公转是“自西向东”的,因此是饶着Z轴负方向进行逆时针旋转 */
glTranslatef(地球轨道半径, 0, 0);
glutSolidSphere(地球半径, 20, 20);
月亮是最复杂的。因为它不仅要绕地球转,还要随着地球绕太阳转。但如果我们选择地球作为参考,则月亮进行的运动就是一个简单的圆周运动了。如果我们先绘制地球,再绘制月亮,则只需要进行与地球类似的变换:
glRotatef(月亮旋转的角度, 0, 0, -1);
glTranslatef(月亮轨道半径, 0, 0);
glutSolidSphere(月亮半径, 20, 20);
但这个“月亮旋转的角度”,并不能简单的理解为day/一个月的天数30*360度。因为我们在绘制地球时,这个坐标已经是旋转过的。现在的旋转是在以前的基础上进行旋转,因此还需要处理这个“差值”。我们可以写成:day/30*360 - day,即减去原来已经转过的角度。这只是一种简单的处理,当然也可以在绘制地球前用glPushMatrix保存矩阵,绘制地球后用glPopMatrix恢复矩阵。再设计一个跟地球位置无关的月亮位置公式,来绘制月亮。通常后一种方法比前一种要好,因为浮点的运算是不精确的,即是说我们计算地球本身的位置就是不精确的。拿这个不精确的数去计算月亮的位置,会导致
“不精确”的成分累积,过多的“不精确”会造成错误。我们这个小程序没有去考虑这个,但并不是说这个问题不重要。
还有一个需要注意的细节: OpenGL把三维坐标中的物体绘制到二维屏幕,绘制的顺序是按照代码的顺序来进行的。因此后绘制的物体会遮住先绘制的物体,即使后绘制的物体在先绘制的物体的“后面”也是如此。使用深度测试可以解决这一问题。使用的方法是:1、以GL_DEPTH_TEST为参数调用glEnable函数,启动深度测试。2、在必要时(通常是每次绘制画面开始时),清空深度缓冲,即:glClear(GL_DEPTH_BUFFER_BIT);其中,glClear
(GL_COLOR_BUFFER_BIT)与glClear(GL_DEPTH_BUFFER_BIT)可以合并写为:
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
且后者的运行速度可能比前者快。
到此为止,我们终于可以得到整个“太阳,地球和月亮”系统的完整代码。
<span style="font-size:14px;">// 太阳、地球和月亮
// 假设每个月都是30天
// 一年12个月,共是360天
static int day = 200; // day的变化:从0到359
void myDisplay(void)
{
glEnable(GL_DEPTH_TEST); //启动深度测试,解决后绘制的物体挡住先绘制的物体
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //清空深度缓存和屏幕上的颜色 glMatrixMode(GL_PROJECTION); //操作的是投影矩阵
glLoadIdentity(); //把当前矩阵设置为单位矩阵。
gluPerspective(75, 1, 1, 400000000); //将当前的可视空间设置为透视投影空间 glMatrixMode(GL_MODELVIEW); //设置当前操作的矩阵为“模型视图矩阵”。
glLoadIdentity();
gluLookAt(0, -200000000, 200000000, 0, 0, 0, 0, 0, 1); //要改变观察点的位置 // 绘制红色的“太阳”
glColor3f(1.0f, 0.0f, 0.0f);
glutSolidSphere(69600000, 20, 20);
// 绘制蓝色的“地球”
glColor3f(0.0f, 0.0f, 1.0f);
glRotatef(day/360.0*360.0, 0.0f, 0.0f, -1.0f);
glTranslatef(150000000, 0.0f, 0.0f);
glutSolidSphere(15945000, 20, 20);
// 绘制黄色的“月亮”
glColor3f(1.0f, 1.0f, 0.0f);
glRotatef(day/30.0*360.0 - day/360.0*360.0, 0.0f, 0.0f, -1.0f);
glTranslatef(38000000, 0.0f, 0.0f);
glutSolidSphere(4345000, 20, 20); glFlush();
}
</span>
试修改day的值,看看画面有何变化。
OpenGL通过矩阵变换来把三维物体转变为二维图象,进而在屏幕上显示出来。为了指定当前操作的是何种矩阵,我们使用了函数glMatrixMode。
我们可以移动、旋转观察点或者移动、旋转物体,使用的函数是glTranslate*和glRotate*。
我们可以缩放物体,使用的函数是glScale*。
我们可以定义可视空间,这个空间可以是“正投影”的(使用glOrtho或gluOrtho2D),也可以是“透视投影”的(使用glFrustum或gluPerspective)。
我们可以定义绘制到窗口的范围,使用的函数是glViewport。
矩阵有自己的“堆栈”,方便进行保存和恢复。这在绘制复杂图形时很有帮助。使用的函数是glPushMatrix和glPopMatrix。
OpenGL入门学习(六)
动画制作——让昨天那个“太阳、地球和月亮”天体图画动起来。
本次课程,我们将进入激动人心的计算机动画世界。
想必大家都知道电影和动画的工作原理吧?是的,快速的把看似连续的画面一幅幅的呈现在人们面前。一旦每秒钟呈现的画面超过24幅,人们就会错以为它是连续的。
我们通常观看的电视,每秒播放25或30幅画面。但对于计算机来说,它可以播放更多的画面,以达到更平滑的效果。如果速度过慢,画面不够平滑。如果速度过快,则人眼未必就能反应得过来。对于一个正常人来说,每秒60~120幅图画是比较合适的。具体的数值因人而异。
假设某动画一共有n幅画面,则它的工作步骤就是:
显示第1幅画面,然后等待一小段时间,直到下一个1/24秒
显示第2幅画面,然后等待一小段时间,直到下一个1/24秒
……
显示第n幅画面,然后等待一小段时间,直到下一个1/24秒
结束
如果用C语言伪代码来描述这一过程,就是:
for(i=0; i<n; ++i)
{
DrawScene(i);
Wait();
}
1、双缓冲技术
在计算机上的动画与实际的动画有些不同:实际的动画都是先画好了,播放的时候直接拿出来显示就行。计算机动画则是画一张,就拿出来一张,再画下一张,再拿出来。如果所需要绘制的图形很简单,那么这样也没什么问题。但一旦图形比较复杂,绘制需要的时间较长,问题就会变得突出。
让我们把计算机想象成一个画图比较快的人,假如他直接在屏幕上画图,而图形比较复杂,则有可能在他只画了某幅图的一半的时候就被观众看到。而后面虽然他把画补全了,但观众的眼睛却又没有反应过来,还停留在原来那个残缺的画面上。也就是说,有时候观众看到完整的图象,有时却又只看到残缺的图象,这样就造成了屏幕的闪烁。
如何解决这一问题呢?我们设想有两块画板,画图的人在旁边画,画好以后把他手里的画板与挂在屏幕上的画板相交换。这样以来,观众就不会看到残缺的画了。这一技术被应用到计算机图形中,称为双缓冲技术。即:在存储器(很有可能是显存)中开辟两块区域,一块作为发送到显示器的数据,一块作为绘画的区域,在适当的时候交换它们。由于交换两块内存区域实际上只需要交换两个指针,这一方法效率非常高,所以被广泛的采用。
注意:虽然绝大多数平台都支持双缓冲技术,但这一技术并不是OpenGL标准中的内容。OpenGL为了保证更好的可移植性,允许在实现时不使用双缓冲技术。当然,我们常用的PC都是支持双缓冲技术的。
要启动双缓冲功能,最简单的办法就是使用GLUT工具包。我们以前在main函数里面写:
glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE);
其中GLUT_SINGLE表示单缓冲,如果改成GLUT_DOUBLE就是双缓冲了。
当然还有需要更改的地方——每次绘制完成时,我们需要交换两个缓冲区,把绘制好的信息用于屏幕显示(否则无论怎么绘制,还是什么都看不到)。如果使用GLUT工具包,也可以很轻松的完成这一工作,只要在绘制完成时简单的调用glutSwapBuffers函数就可以了。
2、实现连续动画
似乎没有任何疑问,我们应该把绘制动画的代码写成下面这个样子:
for(i=0; i<n; ++i)
{
DrawScene(i);
glutSwapBuffers();
Wait();
}
但事实上,这样做不太符合窗口系统的程序设计思路。还记得我们的第一个OpenGL程序吗?我们在main函数里写:glutDisplayFunc(&myDisplay);
意思是对系统说:如果你需要绘制窗口了,请调用myDisplay这个函数。为什么我们不直接调用myDisplay,而要采用这种看似“舍近求远”的做法呢?原因在于——我们自己的程序无法掌握究竟什么时候该绘制窗口。因为一般的窗口系统——拿我们熟悉一点的来说——Windows和X窗口系统,都是支持同时显示多个窗口的。假如你的程序窗口碰巧被别的窗口遮住了,后来用户又把原来遮住的窗口移开,这时你的窗口需要重新绘制。很不幸的,你无法知道这一事件发生的具体时间。因此这一切只好委托操作系统来办了。
现在我们再看上面那个循环。既然DrawScene都可以交给操作系统来代办了,那让整个循环运行起来的工作是否也可以交给操作系统呢?答案是肯定的。我们先前的思路是:绘制,然后等待一段时间;再绘制,再等待一段时间。但如果去掉等待的时间,就变成了绘制,绘制,……,不停的绘制。——当然了,资源是公用的嘛,杀毒软件总要工作吧?我的下载不能停下来吧?我的mp3播放还不能给耽搁了。总不能因为我们的动画,让其他的工作都停下来。因此,我们需要在CPU空闲的时间绘制。
这里的“在CPU空闲的时间绘制”和我们在第一课讲的“在需要绘制的时候绘制”有些共通,都是“在XX时间做XX事”,GLUT工具包也提供了一个比较类似的函数:glutIdleFunc,表示在CPU空闲的时间调用某一函数。其实GLUT还提供了一些别的函数,例如“在键盘按下时做某事”等。
到现在,我们已经可以初步开始制作动画了。好的,就拿上次那个“太阳、地球和月亮”的程序开刀,让地球和月亮自己动起来。
<span style="font-size:14px;">#include <GL/glut.h>
// 太阳、地球和月亮
// 假设每个月都是30天
// 一年12个月,共是360天
static int day = 200; // day的变化:从0到359
void myDisplay(void)
{
/****************************************************
这里的内容照搬上一课的,只因为使用了双缓冲,补上最后这句
*****************************************************/
glutSwapBuffers();
} void myIdle(void)
{
/* 新的函数,在空闲时调用,作用是把日期往后移动一天并重新绘制,达到动画效果 */
++day;
if( day >= 360 )
day = 0;
myDisplay();
} int main(int argc, char *argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE); // 修改了参数为GLUT_DOUBLE
glutInitWindowPosition(100, 100);
glutInitWindowSize(400, 400);
glutCreateWindow("太阳,地球和月亮"); // 改了窗口标题
glutDisplayFunc(&myDisplay);
glutIdleFunc(&myIdle); // 新加入了这句
glutMainLoop();
return 0;
}
</span>
3、关于垂直同步
代码是写好了,但相信大家还有疑问。某些朋友可能在运行时发现,虽然CPU几乎都用上了,但运动速度很快,根本看不清楚,另一些朋友在运行时发现CPU使用率很低,根本就没有把空闲时间完全利用起来。但对于上面那段代码来说,这些现象都是合理的。这里就牵涉到关于垂直同步的问题。
大家知道显示器的刷新率是比较有限的,一般为60~120Hz,也就是一秒钟刷新60~120次。但如果叫计算机绘制一个简单的画面,例如只有一个三角形,则一秒钟可以绘制成千上万次。因此,如果最大限度的利用计算机的处理能力,绘制很多幅画面,但显示器的刷新速度却跟不上,这不仅造成性能的浪费,还可能带来一些负面影响(例如,显示器只刷新到一半时,需要绘制的内容却变化了,由于显示器是逐行刷新的,于是显示器上半部分和下半部分实际上是来自两幅画面)。采用垂直同步技术可以解决这一问题。即,只有在显示器刷新时,才把绘制好的图象传输出去供显示。这样一来,计算机就不必去绘制大量的根本就用不到的图象了。如果显示器的刷新率为85Hz,则计算机一秒钟只需要绘制85幅图象就足够,如果场景足够简单,就会造成比较多的CPU空闲。
几乎所有的显卡都支持“垂直同步”这一功能。
垂直同步也有它的问题。如果刷新频率为60Hz,则在绘制比较简单的场景时,绘制一幅图画需要的时间很短,帧速可以恒定在60FPS(即60帧/秒)。如果场景变得复杂,绘制一幅图画的时间超过了1/60秒,则帧速将急剧下降。
如果绘制一幅图画的时间为1/50,则在第一个1/60秒时,显示器需要刷新了,但由于新的图画没有画好,所以只能显示原来的图画,等到下一个1/60秒时才显示新的图画。于是显示一幅图画实际上用了1/30秒,帧速为30FPS。(如果不采用垂直同步,则帧速应该是50FPS)
如果绘制一幅图画的时间更长,则下降的趋势就是阶梯状的:60FPS,30FPS,20FPS,……(60/1,60/2,60/3,……)
如果每一幅图画的复杂程度是不一致的,且绘制它们需要的时间都在1/60上下。则在1/60时间内画完时,帧速为60FPS,在1/60时间未完成时,帧速为30FPS,这就造成了帧速的跳动。这是很麻烦的事情,需要避免它——要么想办法简化每一画面的绘制时间,要么都延迟一小段时间,以作到统一。
回过头来看前面的问题。如果使用了大量的CPU而且速度很快无法看清,则打开垂直同步可以解决该问题。当然如果你认为垂直同步有这样那样的缺点,也可以关闭它。——至于如何打开和关闭,因操作系统而异了。具体步骤请自己搜索之。
当然,也有其它办法可以控制动画的帧速,或者尽量让动画的速度尽量和帧速无关。不过这里面很多内容都是与操作系统比较紧密的,况且它们跟OpenGL关系也不太大。这里就不做介绍了。
4、计算帧速
不知道大家玩过3D Mark这个软件没有,它可以运行各种场景,测出帧速,并且为你的系统给出评分。这里我也介绍一个计算帧速的方法。
根据定义,帧速就是一秒钟内播放的画面数目(FPS)。我们可以先测量绘制两幅画面之间时间t,然后求它的倒数即可。假如t=0.05s,则FPS的值就是1/0.05=20。
理论上是如此了,可是如何得到这个时间呢?通常C语言的time函数精确度一般只到一秒,肯定是不行了。clock函数也就到十毫秒左右,还是有点不够。因为FPS为60和FPS为100的时候,t的值都是十几毫秒。
你知道如何测量一张纸的厚度吗?一个粗略的办法就是:用很多张纸叠在一起测厚度,计算平均值就可以了。我们这里也可以这样办。测量绘制50幅画面(包括垂直同步等因素的等待时间)需要的时间t',由t'=t*50很容易的得到FPS=1/t=50/t'
下面这段代码可以统计该函数自身的调用频率,(原理就像上面说的那样),程序并不复杂,并且这并不属于OpenGL的内容,所以我不打算详细讲述它。
<span style="font-size:14px;">#include <time.h>
double CalFrequency()
{
static int count;
static double save;
static clock_t last, current;
double timegap; ++count;
if( count <= 50 )
return save;
count = 0;
last = current;
current = clock();
timegap = (current-last)/(double)CLK_TCK;
save = 50.0/timegap;
return save;
}</span>
最后,要把计算的帧速显示出来,但我们并没有学习如何使用OpenGL把文字显示到屏幕上。——但不要忘了,在我们的图形窗口背后,还有一个命令行窗口~使用printf函数就可以轻易的输出文字了。
#include <stdio.h>
double FPS = CalFrequency();
printf("FPS = %f\n", FPS);
最后的一步,也被我们解决了——虽然做法不太雅观,没关系,以后我们还会改善它的。
时间过得太久,每次给的程序都只是一小段,一些朋友难免会出问题。
现在,我给出一个比较完整的程序,供大家参考。
<span style="font-size:14px;">#include <GL/glut.h>
#include <stdio.h>
#include <time.h> // 太阳、地球和月亮
// 假设每个月都是12天
// 一年12个月,共是360天
static int day = 200; // day的变化:从0到359 double CalFrequency()
{
static int count;
static double save;
static clock_t last, current;
double timegap; ++count;
if( count <= 50 )
return save;
count = 0;
last = current;
current = clock();
timegap = (current-last)/(double)CLK_TCK;
save = 50.0/timegap;
return save;
} void myDisplay(void)
{
double FPS = CalFrequency();
printf("FPS = %f\n", FPS); glEnable(GL_DEPTH_TEST);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(75, 1, 1, 400000000);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0, -200000000, 200000000, 0, 0, 0, 0, 0, 1); // 绘制红色的“太阳”
glColor3f(1.0f, 0.0f, 0.0f);
glutSolidSphere(69600000, 20, 20);
// 绘制蓝色的“地球”
glColor3f(0.0f, 0.0f, 1.0f);
glRotatef(day/360.0*360.0, 0.0f, 0.0f, -1.0f);
glTranslatef(150000000, 0.0f, 0.0f);
glutSolidSphere(15945000, 20, 20);
// 绘制黄色的“月亮”
glColor3f(1.0f, 1.0f, 0.0f);
glRotatef(day/30.0*360.0 - day/360.0*360.0, 0.0f, 0.0f, -1.0f);
glTranslatef(38000000, 0.0f, 0.0f);
glutSolidSphere(4345000, 20, 20); glFlush();
glutSwapBuffers();
} void myIdle(void)
{
++day;
if( day >= 360 )
day = 0;
myDisplay();
} int main(int argc, char *argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
glutInitWindowPosition(100, 100);
glutInitWindowSize(400, 400);
glutCreateWindow("太阳,地球和月亮");
glutDisplayFunc(&myDisplay);
glutIdleFunc(&myIdle);
glutMainLoop();
return 0;
}</span>
小结:
OpenGL动画和传统意义上的动画相似,都是把画面一幅一幅的呈现在观众面前。一旦画面变换的速度快了,观众就会认为画面是连续的。
双缓冲技术是一种在计算机图形中普遍采用的技术,绝大多数OpenGL实现都支持双缓冲技术。
通常都是利用CPU空闲的时候绘制动画,但也可以有其它的选择。
介绍了垂直同步的相关知识。
介绍了一种简单的计算帧速(FPS)的方法。
最后,我们列出了一份完整的天体动画程序清单。