第一个问题是关于 Conflux 的
The first question about Conflux is:
Conflux 实验室环境的 TPS 峰值是 6000
Conflux can reach 6000 TPS under the testing environment,
现在说的是3000
but 3000 TPS is being said, then
具体是哪个数据为准
which of the two TPS-Numbers is more precise?
6000 多和 3000 的实验的测试环境是不一样的
The testing environments for 6000 and 3000 TPS are not the same!
6000 TPS的测试环境中
For the 6000 TPS testing environment,
每个节点的带宽是 40 Mbps
each node has a bandwidth of 40 Mbps
3000 的对应的是 20 Mbps
And for the 3000 TPS the bandwidth for each node is 20 Mbps.
但是因为我们认为实践中可能 40 Mbps
But we think that 40 Mbps bandwidth per node
相对来说是比较难达到的
are quite hard to realize in practice.
以现在的网络条件
And with the current network conditions
所以一般我们以 3000 TPS为准
we use 3000 TPS as our standard.
Conflux 可达到 4000—6000 的 TPS
Conflux can reach 4000 - 6000 TPS
区块确认时间为 4.5—7.4 分钟
With a block confirmation time of 4.5 - 7.4 minutes.
有声音认为正常的确认时间如果不出现分叉
Some might think that if there are no forks in the confirmation time
则必然会丢弃大量的有效交易
a large number of valid transactions will be discarded.
在这么长的延迟时间下谈高 TPS
Talking about high TPS with such a long delay
没有实际的应用价值
has no value for potential real-life applications.
首先丢弃大量有效交易
Discarding large amounts of valid transaction
这个是在比特币
Is something that can only be found in Bitcoin
或者其它采用最长链规则的区块链里面才会有的
or other public chains that use the Longest-Chain Rule.
但是我们会保留所有分叉的区块
But we keep all forked blocks
所以所有的交易都不会丢失
And therefore, all transactions stay and don’t disappear.
然后其次
ANd,
关于确认时间比较慢的问题
About the slow confirmation time!
这个用的数据是我们比较早的实验数据
The number is from our initial tests,
在当时我们采用了非常保守的五秒钟一个块
where we used a conservative average time of 5 seconds per block
所以确认时间是大概 4 分钟到 7 分钟左右
That resulted in a block confirmation time between 4 and 7 minutes.
但是现在我们在测试网上新的结果
But now on our test net,
是每秒钟出四个块
We can produce 4 blocks per second
就是出块的速度提高到 20 倍
Resulting in a time increase of 20 times
然后确认时间也可以缩短到 30 秒以内
And the block confirmation time can be shortened to under 30 seconds.
但这个还是关于区块的确认时间
But this is only about the block confirmation time.
实际上如果说我们考虑单笔交易的确认时间
If we consider the confirmation time of a single transaction in reality,
只要我们在相对一段时间内分叉的区块中
as long as we don’t find any conflicts of this one transaction
都没有和这个交易冲突的任何其它交易
with other transactions in forked blocks from a certain time period,
那么即使这个区块的顺序有一定的变化
even if the sequencing of this block has some changes,
但这样一笔简单的交易
such a simple transaction
依然没有任何 冲突
will have no conflicts
依然会是有效的
and will be valid.
这种情况下我们经过分析
We have analyzed such a situation
其实还可以把确认时间再进一步的缩短
And can even shorten the confirmation time.
但这个需要就更复杂的分析以后
But this needs more complex analysis
才可以确定到底能到多短
To confirm to which extend the confirmation time can be reduced.
加密算法的抗冲突性如何
How is the collision resistance of the encryption algorithm?
加密算法的抗冲突性
The collision resistance of the encryption algorithm
并不是加密算法的设计指标之一
is not actually one of the design indicators for the encryption algorithm.
所以有一些算法可能会有抗冲突性
Therefore, only some algorithms might be able to achieve collision resistance,
但是这个并没有普遍的要求
but this has special needs!
比如说我们熟悉的一次一密的加密算法
For example, with the one-time pad algorithm
包括 AES 这样的加密算法
and even when we encrypt the algorithm, with let’s say AES,
都是对冲突性没有任何抵抗能力的
the algorithm is not really resistant to conflict.
我们随便的就可以找到一个明文和密钥对
We can find a random plain text and pair it with a key
生成任何的一个密文
and form any encryption.
但是在有些场景下
But in some scenarios,
如果我们需要对加密的明文的完整性进行检验
if we need to do an integrity test on the completeness of the encrypted plain text
我们通常会用到一种叫做认证加密的算法
an algorithm called authentication encryption (AE) is usually used.
这个会比普通的加密算法要稍微复杂一点
This is a bit more complicated than normal encryption.
但基本的原理就是除了明文信息以外
The basics are: besides the plain text
我还要附带上一个明文消息的哈希值
we need to attach the hash of the plain text
然后把明文消息和哈希值放在一起进行加密
and then encrypt the plain text with the respective hash.
这样解密的时候
Like this, during the decryption process,
如果用不同的密钥解出来的
when using a non-corresponding key to decrypt
就不会在原来的明文的空间里边
the decrypted message will be totally different
因为解出来以后
because the hash of the decrypted plain text
对应的哈希值是对不上的
does not match the corresponding hash value.
所以这种情况下
So in this situation,
就可以保证很难找到一个冲突
finding a conflict of single transactions will be very hard.
这里抗冲突性还是通过哈希函数实现的
The collision resistance is realized the hash function
而不是通过加密算法本身
and not the encryption algorithm.
为什么一个好的哈希算法
So why does a good hash-algorithm
不允许攻击者找到两个产生相同哈希的消息
not allow the attacker to find two produced messages with the same hash function?
首先这个是密码学哈希算法的定义所要求的
This is the first requirement in Cryptography for hash algorithms
这也是密码学哈希算法最主要的目的
And is also the most important purpose of hash algorithms.
然后他们要做的就是让生成的哈希的结果
And then they need to ensure that the result of the generated hash
是非常难预测的
is very hard to predict.
因为难以预测
Because it is hard to predict
而且是不可逆的
and is irreversible due to it being asymmetric
所以就很难让攻击者找到两个不同的明文
it is very hard for the attacker to find two different plain texts
对应同样的哈希值
with the same hash value.
这样的话就可以把哈希值作为明文的一个代表
This way we can see the hash value being a representative of the plain text
然后去使用
and using it
会比较方便
will be easier.
如何将 AES 加密中使用的密钥
How to share a key with AES encryption
与其它应用程序共享进行解密
with other applications for decryption?
这个共享的方式是有很多
There are many ways to share
当然最简单的共享方式是你把这个密钥
The easiest way to share is for you to copy
抄下来或者拷贝下来
or write down the key
然后以一个安全的方式传输给对方
and then use a safe method to send it to the opposite party.
这个安全的方式可以是一个已经加密的信道
This ‘safe method’ can be an already encrypted messaging channel
或者也可以是人线下
or offline
就是人肉去传输
meaning giving it to someone in person.
当然在线上传输的话
Of course, if it is transmitted online
可以用一些密码学
cryptography can be used.
主要是公钥密码学里
In Public-Key cryptography,
会有专门的密钥交换协议
there are so-called key exchange protocols.
用这样的协议大家就可以
These protocols allow multiple parties
在线上去产生一个双方共享的密钥
to generate a shared key by exchanging messages.
同时即便中间被人窃听
Furthermore, even if an eavesdropper
你们交换的消息
has access to all the exchanged messages,
这个密钥依然是安全的
the generated key remains secure (against the eavesdropper).