【题目链接】:http://codeforces.com/problemset/problem/429/D
【题意】
给你n个数字;
让你求出一段区间[l,r]
使得
(r−l)2+(∑rl+1a[i])2最小
【题解】
求出前缀和数组sum[i];
可以发现,如果把数组的下标i作为第一维坐标(x),前缀和sum[i]作为第二维坐标(y);
所求的式子就是任意两点之间的距离平方;
问题转化成:已知平面上的n个点;
求最近的两个点之间的距离的平方;
这个可以用分治的方法搞出来;
(感觉就是个剪枝的暴力);
据说复杂度是N⋅log2N
【Number Of WA】
2
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0),cin.tie(0)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 1e5+100;
const LL INF = 8e18 + 1;
//4e18
//8e18
struct abc{
LL x,y;
};
LL a[N],sum[N];
abc b[N],c[N];
int n;
LL sqr(LL x){
return x*x;
}
LL dis(abc a,abc b){
LL temp = 0;
temp += sqr(a.x-b.x);
temp += sqr(a.y-b.y);
return temp;
}
LL query(int l,int r){
LL ret = INF;
if (l>=r) return ret;
if (l+1==r) return dis(b[l],b[r]);
int m = (l+r)>>1,k = 0;
LL t1 = query(l,m),t2 = query(m+1,r),temp;
ret = min(t1,t2);
rep2(i,m,l){
temp = sqr(b[i].x-b[m].x);
if (temp>ret) break;
c[++k] = b[i];
}
rep1(i,m+1,r){
temp = sqr(b[i].x-b[m].x);
if (temp>ret) break;
c[++k] = b[i];
}
sort(c+1,c+1+k,[&] (abc a,abc b) {return a.y<b.y;});
rep1(i,1,k)
rep1(j,i+1,k){
temp = sqr(c[j].y-c[i].y);
if (temp > ret) break;
ret = min(ret,dis(c[i],c[j]));
}
return ret;
}
int main(){
//Open();
Close();
cin >> n;
rep1(i,1,n) cin >> a[i];
rep1(i,1,n) sum[i] = sum[i-1] + a[i];
rep1(i,1,n){
b[i].x = i,b[i].y = sum[i];
}
sort(b+1,b+1+n,[&] (abc a,abc b) { return a.x < b.x;});
cout << query(1,n) << endl;
return 0;
}