spark笔记之RDD容错机制之checkpoint

0.checkpoint是什么

(1)、Spark 在生产环境下经常会面临transformation的RDD非常多(例如一个Job中包含1万个RDD)或者具体transformation的RDD本身计算特别复杂或者耗时(例如计算时长超过1个小时),这个时候就要考虑对计算结果数据持久化保存;

(2)、Spark是擅长多步骤迭代的,同时擅长基于Job的复用,这个时候如果能够对曾经计算的过程产生的数据进行复用,就可以极大的提升效率;

(3)、如果采用persist把数据放在内存中,虽然是快速的,但是也是最不可靠的;如果把数据放在磁盘上,也不是完全可靠的!例如磁盘会损坏,系统管理员可能清空磁盘。

(4)、Checkpoint的产生就是为了相对而言更加可靠的持久化数据,在Checkpoint的时候可以指定把数据放在本地,并且是多副本的方式,但是在生产环境下是放在HDFS上,这就天然的借助了HDFS高容错、高可靠的特征来完成了最大化的可靠的持久化数据的方式;

假如进行一个1万个算子操作,在9000个算子的时候persist,数据还是有可能丢失的,但是如果checkpoint,数据丢失的概率几乎为0。

1.checkpoint原理机制

(1)当RDD使用cache机制从内存中读取数据,如果数据没有读到,会使用checkpoint机制读取数据。此时如果没有checkpoint机制,那么就需要找到父RDD重新计算数据了,因此checkpoint是个很重要的容错机制。checkpoint就是对于一个RDD chain(链)如果后面需要反复使用某些中间结果RDD,可能因为一些故障导致该中间数据丢失,那么就可以针对该RDD启动checkpoint机制,使用checkpoint首先需要调用sparkContext的setCheckpoint方法,设置一个容错文件系统目录,比如hdfs,然后对RDD调用checkpoint方法。之后在RDD所处的job运行结束后,会启动一个单独的job来将checkpoint过的数据写入之前设置的文件系统持久化,进行高可用。所以后面的计算在使用该RDD时,如果数据丢失了,但是还是可以从它的checkpoint中读取数据,不需要重新计算。

(2)persist或者cache与checkpoint的区别在于,前者持久化只是将数据保存在BlockManager中但是其lineage是不变的,但是后者checkpoint执行完后,rdd已经没有依赖RDD,只有一个checkpointRDD,checkpoint之后,RDD的lineage就改变了。persist或者cache持久化的数据丢失的可能性更大,因为可能磁盘或内存被清理,但是checkpoint的数据通常保存到hdfs上,放在了高容错文件系统。

上一篇:mysql事务、redo日志、undo日志、checkpoint详解


下一篇:.NET Core 使用ODP.NET Core连接操作Oracle数据库