斯坦福公开课
论文
- Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
- Effective Approaches to Attention-based Neural Machine Translation
- Neural Machine Translation by Jointly Learning to Align and Translate
PyTorch代码(学习代码编写方式)
更多关于Machine Translation
- Beam Search
- Pointer network 文本摘要
- Copy Mechanism 文本摘要
- Converage Loss
- ConvSeq2Seq
- Transformer
- Tensor2Tensor
TODO
- 建议同学尝试对中文进行分词
NER
部分代码
读入中英文数据
- 英文我们使用nltk的word tokenizer来分词,并且使用小写字母
- 中文我们直接使用单个汉字作为基本单元
import os import sys import math from collections import Counter import numpy as np import random import torch import torch.nn as nn import torch.nn.functional as F import nltk def load_data(in_file): cn = [] en = [] num_examples = 0 with open(in_file, 'r') as f: for line in f: line = line.strip().split("\t") en.append(["BOS"] + nltk.word_tokenize(line[0].lower()) + ["EOS"]) # split chinese sentence into characters cn.append(["BOS"] + [c for c in line[1]] + ["EOS"]) return en, cn train_file = "nmt/en-cn/train.txt" dev_file = "nmt/en-cn/dev.txt" train_en, train_cn = load_data(train_file) dev_en, dev_cn = load_data(dev_file)
encoder/attention/decoder
class Encoder(nn.Module): def __init__(self, vocab_size, embed_size, enc_hidden_size, dec_hidden_size, dropout=0.2): super(Encoder, self).__init__() self.embed = nn.Embedding(vocab_size, embed_size) self.rnn = nn.GRU(embed_size, enc_hidden_size, batch_first=True, bidirectional=True) self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(enc_hidden_size * 2, dec_hidden_size) def forward(self, x, lengths): sorted_len, sorted_idx = lengths.sort(0, descending=True) x_sorted = x[sorted_idx.long()] embedded = self.dropout(self.embed(x_sorted)) packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, sorted_len.long().cpu().data.numpy(), batch_first=True) packed_out, hid = self.rnn(packed_embedded) out, _ = nn.utils.rnn.pad_packed_sequence(packed_out, batch_first=True) _, original_idx = sorted_idx.sort(0, descending=False) out = out[original_idx.long()].contiguous() hid = hid[:, original_idx.long()].contiguous() hid = torch.cat([hid[-2], hid[-1]], dim=1) hid = torch.tanh(self.fc(hid)).unsqueeze(0) return out, hid class Attention(nn.Module): def __init__(self, enc_hidden_size, dec_hidden_size): super(Attention, self).__init__() self.enc_hidden_size = enc_hidden_size self.dec_hidden_size = dec_hidden_size self.linear_in = nn.Linear(enc_hidden_size*2, dec_hidden_size, bias=False) self.linear_out = nn.Linear(enc_hidden_size*2 + dec_hidden_size, dec_hidden_size) def forward(self, output, context, mask): # output: batch_size, output_len, dec_hidden_size # context: batch_size, context_len, 2*enc_hidden_size batch_size = output.size(0) output_len = output.size(1) input_len = context.size(1) context_in = self.linear_in(context.view(batch_size*input_len, -1)).view( batch_size, input_len, -1) # batch_size, context_len, dec_hidden_size # context_in.transpose(1,2): batch_size, dec_hidden_size, context_len # output: batch_size, output_len, dec_hidden_size attn = torch.bmm(output, context_in.transpose(1,2)) # batch_size, output_len, context_len attn.data.masked_fill(mask, -1e6) attn = F.softmax(attn, dim=2) # batch_size, output_len, context_len context = torch.bmm(attn, context) # batch_size, output_len, enc_hidden_size output = torch.cat((context, output), dim=2) # batch_size, output_len, hidden_size*2 output = output.view(batch_size*output_len, -1) output = torch.tanh(self.linear_out(output)) output = output.view(batch_size, output_len, -1) return output, attn class Decoder(nn.Module): def __init__(self, vocab_size, embed_size, enc_hidden_size, dec_hidden_size, dropout=0.2): super(Decoder, self).__init__() self.embed = nn.Embedding(vocab_size, embed_size) self.attention = Attention(enc_hidden_size, dec_hidden_size) self.rnn = nn.GRU(embed_size, hidden_size, batch_first=True) self.out = nn.Linear(dec_hidden_size, vocab_size) self.dropout = nn.Dropout(dropout) def create_mask(self, x_len, y_len): # a mask of shape x_len * y_len device = x_len.device max_x_len = x_len.max() max_y_len = y_len.max() x_mask = torch.arange(max_x_len, device=x_len.device)[None, :] < x_len[:, None] y_mask = torch.arange(max_y_len, device=x_len.device)[None, :] < y_len[:, None] mask = (1 - x_mask[:, :, None] * y_mask[:, None, :]).byte() return mask def forward(self, ctx, ctx_lengths, y, y_lengths, hid): sorted_len, sorted_idx = y_lengths.sort(0, descending=True) y_sorted = y[sorted_idx.long()] hid = hid[:, sorted_idx.long()] y_sorted = self.dropout(self.embed(y_sorted)) # batch_size, output_length, embed_size packed_seq = nn.utils.rnn.pack_padded_sequence(y_sorted, sorted_len.long().cpu().data.numpy(), batch_first=True) out, hid = self.rnn(packed_seq, hid) unpacked, _ = nn.utils.rnn.pad_packed_sequence(out, batch_first=True) _, original_idx = sorted_idx.sort(0, descending=False) output_seq = unpacked[original_idx.long()].contiguous() hid = hid[:, original_idx.long()].contiguous() mask = self.create_mask(y_lengths, ctx_lengths) output, attn = self.attention(output_seq, ctx, mask) output = F.log_softmax(self.out(output), -1) return output, hid, attn
seq2seq
class Seq2Seq(nn.Module): def __init__(self, encoder, decoder): super(Seq2Seq, self).__init__() self.encoder = encoder self.decoder = decoder def forward(self, x, x_lengths, y, y_lengths): encoder_out, hid = self.encoder(x, x_lengths) output, hid, attn = self.decoder(ctx=encoder_out, ctx_lengths=x_lengths, y=y, y_lengths=y_lengths, hid=hid) return output, attn def translate(self, x, x_lengths, y, max_length=100): encoder_out, hid = self.encoder(x, x_lengths) preds = [] batch_size = x.shape[0] attns = [] for i in range(max_length): output, hid, attn = self.decoder(ctx=encoder_out, ctx_lengths=x_lengths, y=y, y_lengths=torch.ones(batch_size).long().to(y.device), hid=hid) y = output.max(2)[1].view(batch_size, 1) preds.append(y) attns.append(attn) return torch.cat(preds, 1), torch.cat(attns, 1)