[课堂笔记][pytorch学习][7]Seq2Seq

斯坦福公开课

论文

PyTorch代码(学习代码编写方式)

更多关于Machine Translation

  • Beam Search
  • Pointer network 文本摘要
  • Copy Mechanism 文本摘要
  • Converage Loss 
  • ConvSeq2Seq
  • Transformer
  • Tensor2Tensor

TODO

  • 建议同学尝试对中文进行分词

NER

部分代码

读入中英文数据

  • 英文我们使用nltk的word tokenizer来分词,并且使用小写字母
  • 中文我们直接使用单个汉字作为基本单元
import os
import sys
import math
from collections import Counter
import numpy as np
import random

import torch
import torch.nn as nn
import torch.nn.functional as F

import nltk

def load_data(in_file):
    cn = []
    en = []
    num_examples = 0
    with open(in_file, 'r') as f:
        for line in f:
            line = line.strip().split("\t")
            
            en.append(["BOS"] + nltk.word_tokenize(line[0].lower()) + ["EOS"])
            # split chinese sentence into characters
            cn.append(["BOS"] + [c for c in line[1]] + ["EOS"])
    return en, cn

train_file = "nmt/en-cn/train.txt"
dev_file = "nmt/en-cn/dev.txt"
train_en, train_cn = load_data(train_file)
dev_en, dev_cn = load_data(dev_file)

encoder/attention/decoder

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, enc_hidden_size, dec_hidden_size, dropout=0.2):
        super(Encoder, self).__init__()
        self.embed = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, enc_hidden_size, batch_first=True, bidirectional=True)
        self.dropout = nn.Dropout(dropout)
        self.fc = nn.Linear(enc_hidden_size * 2, dec_hidden_size)

    def forward(self, x, lengths):
        sorted_len, sorted_idx = lengths.sort(0, descending=True)
        x_sorted = x[sorted_idx.long()]
        embedded = self.dropout(self.embed(x_sorted))
        
        packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, sorted_len.long().cpu().data.numpy(), batch_first=True)
        packed_out, hid = self.rnn(packed_embedded)
        out, _ = nn.utils.rnn.pad_packed_sequence(packed_out, batch_first=True)
        _, original_idx = sorted_idx.sort(0, descending=False)
        out = out[original_idx.long()].contiguous()
        hid = hid[:, original_idx.long()].contiguous()
        
        hid = torch.cat([hid[-2], hid[-1]], dim=1)
        hid = torch.tanh(self.fc(hid)).unsqueeze(0)

        return out, hid

class Attention(nn.Module):
    def __init__(self, enc_hidden_size, dec_hidden_size):
        super(Attention, self).__init__()

        self.enc_hidden_size = enc_hidden_size
        self.dec_hidden_size = dec_hidden_size

        self.linear_in = nn.Linear(enc_hidden_size*2, dec_hidden_size, bias=False)
        self.linear_out = nn.Linear(enc_hidden_size*2 + dec_hidden_size, dec_hidden_size)
        
    def forward(self, output, context, mask):
        # output: batch_size, output_len, dec_hidden_size
        # context: batch_size, context_len, 2*enc_hidden_size
    
        batch_size = output.size(0)
        output_len = output.size(1)
        input_len = context.size(1)
        
        context_in = self.linear_in(context.view(batch_size*input_len, -1)).view(                
            batch_size, input_len, -1) # batch_size, context_len, dec_hidden_size
        
        # context_in.transpose(1,2): batch_size, dec_hidden_size, context_len 
        # output: batch_size, output_len, dec_hidden_size
        attn = torch.bmm(output, context_in.transpose(1,2)) 
        # batch_size, output_len, context_len

        attn.data.masked_fill(mask, -1e6)

        attn = F.softmax(attn, dim=2) 
        # batch_size, output_len, context_len

        context = torch.bmm(attn, context) 
        # batch_size, output_len, enc_hidden_size
        
        output = torch.cat((context, output), dim=2) # batch_size, output_len, hidden_size*2

        output = output.view(batch_size*output_len, -1)
        output = torch.tanh(self.linear_out(output))
        output = output.view(batch_size, output_len, -1)
        return output, attn


class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, enc_hidden_size, dec_hidden_size, dropout=0.2):
        super(Decoder, self).__init__()
        self.embed = nn.Embedding(vocab_size, embed_size)
        self.attention = Attention(enc_hidden_size, dec_hidden_size)
        self.rnn = nn.GRU(embed_size, hidden_size, batch_first=True)
        self.out = nn.Linear(dec_hidden_size, vocab_size)
        self.dropout = nn.Dropout(dropout)

    def create_mask(self, x_len, y_len):
        # a mask of shape x_len * y_len
        device = x_len.device
        max_x_len = x_len.max()
        max_y_len = y_len.max()
        x_mask = torch.arange(max_x_len, device=x_len.device)[None, :] < x_len[:, None]
        y_mask = torch.arange(max_y_len, device=x_len.device)[None, :] < y_len[:, None]
        mask = (1 - x_mask[:, :, None] * y_mask[:, None, :]).byte()
        return mask
    
    def forward(self, ctx, ctx_lengths, y, y_lengths, hid):
        sorted_len, sorted_idx = y_lengths.sort(0, descending=True)
        y_sorted = y[sorted_idx.long()]
        hid = hid[:, sorted_idx.long()]
        
        y_sorted = self.dropout(self.embed(y_sorted)) # batch_size, output_length, embed_size

        packed_seq = nn.utils.rnn.pack_padded_sequence(y_sorted, sorted_len.long().cpu().data.numpy(), batch_first=True)
        out, hid = self.rnn(packed_seq, hid)
        unpacked, _ = nn.utils.rnn.pad_packed_sequence(out, batch_first=True)
        _, original_idx = sorted_idx.sort(0, descending=False)
        output_seq = unpacked[original_idx.long()].contiguous()
        hid = hid[:, original_idx.long()].contiguous()

        mask = self.create_mask(y_lengths, ctx_lengths)

        output, attn = self.attention(output_seq, ctx, mask)
        output = F.log_softmax(self.out(output), -1)
        
        return output, hid, attn

seq2seq

class Seq2Seq(nn.Module):
    def __init__(self, encoder, decoder):
        super(Seq2Seq, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        
    def forward(self, x, x_lengths, y, y_lengths):
        encoder_out, hid = self.encoder(x, x_lengths)
        output, hid, attn = self.decoder(ctx=encoder_out, 
                    ctx_lengths=x_lengths,
                    y=y,
                    y_lengths=y_lengths,
                    hid=hid)
        return output, attn
    
    def translate(self, x, x_lengths, y, max_length=100):
        encoder_out, hid = self.encoder(x, x_lengths)
        preds = []
        batch_size = x.shape[0]
        attns = []
        for i in range(max_length):
            output, hid, attn = self.decoder(ctx=encoder_out, 
                    ctx_lengths=x_lengths,
                    y=y,
                    y_lengths=torch.ones(batch_size).long().to(y.device),
                    hid=hid)
            y = output.max(2)[1].view(batch_size, 1)
            preds.append(y)
            attns.append(attn)
        return torch.cat(preds, 1), torch.cat(attns, 1)

 

上一篇:Mac开发之HID通讯开发


下一篇:WPF客户端开发需要知道的触摸失效问题