前文:
存储格式:
leveldb数据在内存中以 Memtable存储(核心结构是skiplist 已介绍),当达到一定容量则转换为Immutable Memtable,由后台线程存储进磁盘中.同时另开一个新 Memtable,记录数据.
Memtable记录修改新kv对,可读可写.Immutable Memtable不可更改.
Memtable使用的就是skiplist记录key value
class MemTable {
public:
// MemTables are reference counted. The initial reference count
// is zero and the caller must call Ref() at least once.
explicit MemTable(const InternalKeyComparator& comparator);
//简配版应用计数 初始化时候需要引用ref将计数+1
// Increase reference count.
void Ref() { ++refs_; } // Drop reference count. Delete if no more references exist.
//unref调用减少应用计数.计数为0 则删除自己
void Unref() {
--refs_;
assert(refs_ >= );
if (refs_ <= ) {
delete this;
}
}
//内存使用相关,暂时不关注
size_t ApproximateMemoryUsage(); //迭代器 类似MEMTABLE 中元素的指针
Iterator* NewIterator(); //KEY是按次序排序,所以结构体内有比较key的定义
struct KeyComparator {
const InternalKeyComparator comparator;
explicit KeyComparator(const InternalKeyComparator& c) : comparator(c) { }
int operator()(const char* a, const char* b) const;
}; //私有类中包含构造复制函数,达到禁止复制的目的
private:
// No copying allowed
MemTable(const MemTable&);
void operator=(const MemTable&);
}
Add Get 添加与读取函数, 删除和修改也是添加完成.
修改删除的优化:
实际上的kv删除或者修改,均未删除之前相同的Key记录,只是新增一个修改后的kv对或者带有删除标记的kv对.
因为系统在查找kv对是以由新至旧次序查找,所以肯定是查找到最新的删除或者修改值.
真正的冗余的老KV对在后面compac操作中才是真正的删除(后继介绍)
// Add an entry into memtable that maps key to value at the
// specified sequence number and with the specified type.
// Typically value will be empty if type==kTypeDeletion.
void Add(SequenceNumber seq, ValueType type,
const Slice& key,
const Slice& value); // If memtable contains a value for key, store it in *value and return true.
// If memtable contains a deletion for key, store a NotFound() error
// in *status and return true.
// Else, return false.
bool Get(const LookupKey& key, std::string* value, Status* s);
Add 函数添加 kTypeDeletion类的kv对,表示删除, value内容为空
void MemTable::Add(SequenceNumber s, ValueType type,
const Slice& key,
const Slice& value) {
// Format of an entry is concatenation of:
// key_size : varint32 of internal_key.size()
// key bytes : char[internal_key.size()]
// value_size : varint32 of value.size()
// value bytes : char[value.size()]
// 插入格式为
//|--------|-------------------------|---------------------|
//|key_size|char[internal_key.size()]|value_size|value_size|
//|--------|-------------------------|---------------------|
size_t key_size = key.size();
size_t val_size = value.size();
size_t internal_key_size = key_size + ;
const size_t encoded_len =
VarintLength(internal_key_size) + internal_key_size +
VarintLength(val_size) + val_size; //最后要插入skiplist的buf的长度
char* buf = arena_.Allocate(encoded_len);
char* p = EncodeVarint32(buf, internal_key_size); //buf放入internal——key_size 32位
memcpy(p, key.data(), key_size); //存放指针拷贝实际的key值
p += key_size; //指针偏移KEYSIZE字节
EncodeFixed64(p, (s << ) | type); //存放64位的sequenceNumber 末尾8位空出 最后一位留给数据type
p += ;
p = EncodeVarint32(p, val_size); //存放实际val内容
memcpy(p, value.data(), val_size);
assert((p + val_size) - buf == encoded_len);
table_.Insert(buf); //skiplist insert
}
Get函数在MemTable中查找key ,查找成功返回TRUE,查找成功但是type为deletion,返回true并且status为NotFound()错误
其他情况返回false
查找有个细节 skiplist返回的是最近的大于或者等于GreaterOrEqual 所以只要关键字相同 不要求序列号sequence
完全一样(序列号肯定是最新的最大的序列号)
然后代码里再次判断
comparator_.comparator.user_comparator()->Compare(
Slice(key_ptr, key_length - 8),
key.user_key()) == 0)
抛开sequence 仅仅比较key是否相等
bool MemTable::Get(const LookupKey& key, std::string* value, Status* s) {
Slice memkey = key.memtable_key();
Table::Iterator iter(&table_);
iter.Seek(memkey.data());
if (iter.Valid()) {
// entry format is:
// klength varint32
// userkey char[klength]
// tag uint64
// vlength varint32
// value char[vlength]
// Check that it belongs to same user key. We do not check the
// sequence number since the Seek() call above should have skipped
// all entries with overly large sequence numbers.
const char* entry = iter.key();
uint32_t key_length;
const char* key_ptr = GetVarint32Ptr(entry, entry+, &key_length);
if (comparator_.comparator.user_comparator()->Compare(
Slice(key_ptr, key_length - ),
key.user_key()) == ) {
// Correct user key
const uint64_t tag = DecodeFixed64(key_ptr + key_length - );
switch (static_cast<ValueType>(tag & 0xff)) {
case kTypeValue: {
Slice v = GetLengthPrefixedSlice(key_ptr + key_length);
value->assign(v.data(), v.size());
return true;
}
case kTypeDeletion:
*s = Status::NotFound(Slice());
return true;
}
}
}
return false;
}
memtable 使用的InternalKey 代码如下
一个字符串的封装和 比较器InternalKeyComparator代码
// Modules in this directory should keep internal keys wrapped inside
// the following class instead of plain strings so that we do not
// incorrectly use string comparisons instead of an InternalKeyComparator.
class InternalKey {
private:
std::string rep_;
public:
InternalKey() { } // Leave rep_ as empty to indicate it is invalid
InternalKey(const Slice& user_key, SequenceNumber s, ValueType t) {
AppendInternalKey(&rep_, ParsedInternalKey(user_key, s, t));
} void DecodeFrom(const Slice& s) { rep_.assign(s.data(), s.size()); }
Slice Encode() const {
assert(!rep_.empty());
return rep_;
} Slice user_key() const { return ExtractUserKey(rep_); } void SetFrom(const ParsedInternalKey& p) {
rep_.clear();
AppendInternalKey(&rep_, p);
} void Clear() { rep_.clear(); } std::string DebugString() const;
}; inline int InternalKeyComparator::Compare(
const InternalKey& a, const InternalKey& b) const {
return Compare(a.Encode(), b.Encode());
}
inline bool ParseInternalKey(const Slice& internal_key,ParsedInternalKey* result) {
const size_t n = internal_key.size();
if (n < 8) return false;
uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
unsigned char c = num & 0xff; //最后一个字节 代表 类型type
result->sequence = num >> 8; //左移8位 获取序列号
result->type = static_cast<ValueType>(c);
result->user_key = Slice(internal_key.data(), n - 8); //除开信息位的8字节 其余便是数据 转化成 Slice
return (c <= static_cast<unsigned char>(kTypeValue));
}
class LookupKey //DBImpl::Get()查询使用的辅助类
使用两个指针 根据不同需求 提供不同的数据结构
可提供下列三种 Slice
Slice memtable_key()
Slice internal_key()
Slice user_key()
数据都存储在 char space_[200]; // Avoid allocation for short keys
但是如果存储数据过长 则需要重新分配内存
LookupKey::LookupKey(const Slice& user_key, SequenceNumber s) {
size_t usize = user_key.size();
size_t needed = usize + ; // A conservative estimate
char* dst;
if (needed <= sizeof(space_)) { 需要更多的空间 则自行分配和删除
dst = space_;
} else {
dst = new char[needed];
}
start_ = dst;
dst = EncodeVarint32(dst, usize + );
kstart_ = dst;
memcpy(dst, user_key.data(), usize);
dst += usize;
EncodeFixed64(dst, PackSequenceAndType(s, kValueTypeForSeek));
dst += ;
end_ = dst;
}
inline LookupKey::~LookupKey() {
if (start_ != space_) delete[] start_; //自行删除
}
整个类代码如下
// A helper class useful for DBImpl::Get()
class LookupKey { //DBImpl::Get()查询使用的辅助类
public:
// Initialize *this for looking up user_key at a snapshot with
// the specified sequence number.
LookupKey(const Slice& user_key, SequenceNumber sequence); ~LookupKey(); // Return a key suitable for lookup in a MemTable.
Slice memtable_key() const { return Slice(start_, end_ - start_); } // Return an internal key (suitable for passing to an internal iterator)
Slice internal_key() const { return Slice(kstart_, end_ - kstart_); } // Return the user key
Slice user_key() const { return Slice(kstart_, end_ - kstart_ - ); } private:
// We construct a char array of the form:
// klength varint32 <-- start_
// userkey char[klength] <-- kstart_
// tag uint64
// <-- end_
// The array is a suitable MemTable key.
// The suffix starting with "userkey" can be used as an InternalKey.
const char* start_;
const char* kstart_;
const char* end_;
char space_[]; // Avoid allocation for short keys // No copying allowed
LookupKey(const LookupKey&);
void operator=(const LookupKey&);
}; inline LookupKey::~LookupKey() {
if (start_ != space_) delete[] start_;
} }
参考
https://blog.csdn.net/tankles/article/details/7663635
https://blog.csdn.net/sparkliang/article/details/8604424
http://www.cnblogs.com/haippy/archive/2011/12/04/2276064.html