Description
As shown in the following figure, If another lighthouse is in gray area, they can beacon each other.
For example, in following figure, (B, R) is a pair of lighthouse which can beacon each other, while (B, G), (R, G) are NOT.
Input
1st line: N
2nd ~ (N + 1)th line: each line is X Y, means a lighthouse is on the point (X, Y).
Output
How many pairs of lighthourses can beacon each other
( For every lighthouses, X coordinates won't be the same , Y coordinates won't be the same )
Example
Input
3
2 2
4 3
5 1
Output
1
Restrictions
For 90% test cases: 1 <= n <= 3 * 105
For 95% test cases: 1 <= n <= 106
For all test cases: 1 <= n <= 4 * 106
For every lighthouses, X coordinates won't be the same , Y coordinates won't be the same.
1 <= x, y <= 10^8
Time: 2 sec
Memory: 256 MB
Hints
The range of int is usually [-231, 231 - 1], it may be too small.
Solution
#include <cstdio>
const int SZ = 1 << 20; //快速io
struct fastio
{
char inbuf[SZ];
char outbuf[SZ];
fastio()
{
setvbuf(stdin, inbuf, _IOFBF, SZ);
setvbuf(stdout, outbuf, _IOFBF, SZ);
}
} io;
const int maxn = 4e6 + 1;
using ll = long long;
struct node
{
int x, y;
} a[maxn], b[maxn];
ll count = 0;
// 按照 x 升序排列
void mergeX(int lo, int mi, int hi)
{
int i = lo, j = mi;
for (int k = lo; k != hi; ++k)
{
// 这里用了两个 node 来操作,所以不用复制子序列出来
if (hi <= j || (i < mi && (a[i].x < a[j].x || (a[i].x == a[j].x && a[i].y < a[j].y))))
b[k] = a[i++];
else
b[k] = a[j++];
}
for (int k = lo; k != hi; ++k)
a[k] = b[k];
}
void mergeSortX(int lo, int hi)
{
if (hi - lo < 2)
return;
int mi = (hi + lo) >> 1;
mergeSortX(lo, mi);
mergeSortX(mi, hi);
mergeX(lo, mi, hi);
}
void mergeY(int lo, int mi, int hi)
{
int i = lo, j = mi;
for (int k = lo; k != hi; ++k)
{
// i < j 则 j 的右侧都更大,个数为 (hi - 1) - (j - 1)
if (hi <= j || (i < mi && a[i].y < a[j].y))
b[k] = a[i++], count += hi - j;
else
b[k] = a[j++];
}
for (int k = lo; k != hi; ++k)
a[k] = b[k];
}
void mergeSortY(int lo, int hi)
{
if (hi - lo < 2)
return;
int mi = (hi + lo) >> 1;
mergeSortY(lo, mi);
mergeSortY(mi, hi);
mergeY(lo, mi, hi);
}
int main()
{
ll n;
scanf("%lld", &n);
for (int i = 0; i != n; ++i)
{
scanf("%d %d", &a[i].x, &a[i].y);
}
mergeSortX(0, n);
mergeSortY(0, n);
printf("%lld\n", count);
return 0;
}
https://dsa.cs.tsinghua.edu.cn/oj/result/3088fde1b47648d0831755be30e37a6eea4659f2.html