OpenCV 之 特征检测

    特征,也称 兴趣点 或 关键点,如下:蓝框内区域平坦,无特征;黑框内有“边缘”,红框内有“角点”,后二者都可视为“特征”

      OpenCV 之 特征检测

    角点作为一种特征,它具有旋转不变性,如下:当图像旋转时,代表角点响应函数 R 的特征椭圆,其形状保持不变

      OpenCV 之 特征检测

    但是,角点不具有尺度不变性,如下:左图中被检测为角点的特征,当放大到右图的尺度空间时,则会被检测为 边缘 或 曲线

      OpenCV 之 特征检测

 

   下面介绍几种具有尺度不变性的特征检测算法,如 SIFT、SURF、ORB、BRISK、KAZE 和 AKAZE 等

1  特征检测

1.1  SIFT

    SIFT 全称 Scale Invariant Feature Transform,是特征检测中里程碑式的算法,也是目前最有效的特征检测,该算法申请了专利,直到 2020年3月才过专利保护期

    OpenCV 从 4.4.0 起,已经将 SIFT 移到了主模块 feature2d 中,SIFT 继承自 Feature2D 类,而 Feature2D 继承自 Algorithm 类,SIFT 的创建函数 create() 定义如下:

class SIFT : public Feature2D
{
public:
    static Ptr<SIFT> create(
        int nfeatures = 0,               // The number of best features to retain
        int nOctaveLayers = 3,           // The number of layers in each octave. 3 is the value used in D.Lowe paper
        double contrastThreshold = 0.04, // The contrast threshold used to filter out weak features in low-contrast regions
        double edgeThreshold = 10,       // The threshold used to filter out edge-like features
        double sigma = 1.6 );            // The sigma of the Gaussian applied to the input image at the octave 0

    Algorithm 类中有两个虚函数:detect() 检测特征,compute() 计算描述符 

class Feature2D : public virtual Algorithm
{
public:
    /* Detects keypoints in an image (first variant) or image set(second variant). */
virtual void detect(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() );
/* Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant). */
virtual void compute(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors );

1.2  SURF

    SIFT 算法虽好,但计算速度不够快,于是 SIFT 的近似版 SURF (Speeded Up Robust Features) 应运而生, SURF 的运行时间约为 SIFT 的 1/3

    SURF 属于 xfeature2d 模块,也继承自 Feature2D 类,其 create() 函数定义如下:

namespace xfeatures2d
{
class SURF : public Feature2D
{
public:
    static Ptr<SURF> create(
        double hessianThreshold = 100, // Threshold for hessian keypoint detector used in SURF
        int nOctaves = 4,              // Number of pyramid octaves the keypoint detector will use
        int nOctaveLayers = 3,         // Number of octave layers within each octave
        bool extended = false,         // Extended descriptor flag (true, 128-element descriptors; false, 64-element descriptors)
        bool upright = false);         // Up-right or rotated features flag (true,do not compute orientation of features; false, compute orientation)

    其中,hessianThreshold 为海森阈值,只有大于该阈值的特征才会被保留;海森阈值越大,对应检测到的特征越少;海森阈值取决于图像对比度,一般 300~500 之间的检测效果较好    

1.3  CenSurE

    CenSurE (Center Surround Extremas),是在 SURF 基础上做的一种改进,基于 CenSurE 特征检测 和 M-SURF 特征描述符,号称比 SURF 更快,可用于实时处理领域

    OpenCV 并没有完全实现 CenSurE 算法,而是借鉴衍生出了 StarDetector,其 create() 函数定义如下:

    static Ptr<StarDetector> create(
        int maxSize = 45,                   //
        int responseThreshold = 30,         //
        int lineThresholdProjected = 10,    //
        int lineThresholdBinarized = 8,     //
        int suppressNonmaxSize = 5          //
    );

 

2  实时特征检测

    SURF 的运行速度比 SIFT 快 3 倍,但在一些实时处理系统 (视觉里程计) 或低功耗设备中,SURF 还是不够快,于是,便有了下面的两种算法

2.1  ORB

    OpenCV Labs 实现了一种更快的算法 ORB - Oriented FAST and Rotated BRIEF,它是在 FAST 角点检测 和 BRIEF 特征描述符的基础上修改实现的

    视觉 SLAM (Simultaneous Localization and Mapping 同步定位与建图) 领域中,著名的开源项目 ORB-SLAM,其中的特征提取就是基于 ORB 算法

    OpenCV 中 ORB 的 create() 函数定义如下:

static Ptr<ORB> create ( 
    int nfeatures = 500,           // The maximum number of features to retain
    float scaleFactor = 1.2f,      // Pyramid decimation ratio, greater than 1
    int nlevels = 8,               // The number of pyramid levels
    int edgeThreshold = 31,        // This is size of the border where the features are not detected
    int firstLevel = 0,            // The level of pyramid to put source image to
    int WTA_K = 2,                 // The number of points that produce each element of the oriented BRIEF descriptor
    ORB::ScoreType scoreType = ORB::HARRIS_SCORE, // The default HARRIS_SCORE means that Harris algorithm is used to rank features
    int patchSize = 31,            // size of the patch used by the oriented BRIEF descriptor
    int fastThreshold = 20         // the fast threshold
 ); 

2.2  BRISK

    BRISK 号称比 SURF 的运行速度快一个数量级,它基于 AGAST 角点检测 和 BRIEF 特征描述符,其中 AGAST 是比 FAST 更快的一种角点检测算法

    BRISK 的 create() 函数如下:

    /* The BRISK constructor */
    static Ptr<BRISK> create(
        int thresh = 30,            // AGAST detection threshold score 
        int octaves = 3,            // octaves detection octaves. Use 0 to do single scale
        float patternScale = 1.0f   // apply this scale to the pattern used for sampling the neighbourhood of a keypoint
    );

    /* The BRISK constructor for a custom pattern, detection thresholdand octaves */
    static Ptr<BRISK> create(
        int   thresh,                           // AGAST detection threshold score
        int   octaves,                          // detection octaves. Use 0 to do single scale.
        const std::vector<float> &radiusList,   // defines the radii(in pixels) where the samples around a keypoint are taken (for keypoint scale 1).
        const std::vector<int> &numberList,     // defines the number of sampling points on the sampling circle.Must be the same size as radiusList..
        float dMax = 5.85f,                     // threshold for the short pairings used for descriptor formation (in pixels for keypoint scale 1)
        float dMin = 8.2f,                      // threshold for the long pairings used for orientation determination (in pixels for keypoint scale 1)
        const std::vector<int>&indexChange = std::vector<int>()  // index remapping of the bits
    );

2.3  BRIEF 描述符

    上述 ORB 和 BRISK 中,都提到了 BRIEF 特征描述符,BRIEF 全称 Binary Robust Independent Elementary Feature),是用二进制串向量来描述特征的一种方式

    SIFT 中的一个特征,对应着一个由128个浮点数组成的向量,占 512 个字节;而 SURF 的一个特征,对应着一个由 64个浮点数组成的向量,占 256 个字节

    当有成千上万个特征时, 特征描述符会占用大量的内存,并且会增加匹配的时间,在一些资源受限的场合,尤其是嵌入式系统中,SIFT 和 SURF 并非最优选择

    而 BRIEF 特征描述符,采用的是二进制串,可将所占字节缩减为 64 或 32 甚至 16,相比 SIFT 和 SURF,大大减少了对内存的占用,非常适合于实时处理系统

    OpenCV 中 BRIEF 描述符的定义如下:

// Class for computing BRIEF descriptors described in @cite calon2010 .
class BriefDescriptorExtractor : public Feature2D
{
public:
    static Ptr<BriefDescriptorExtractor> create(
        int bytes = 32,                  // legth of the descriptor in bytes, valid values are: 16, 32 (default) or 64 .
        bool use_orientation = false);   // sample patterns using keypoints orientation, disabled by default.
}; 

 

3  非线性尺度空间

    SIFT 和 SURF 是在线性尺度空间内的分析,在构建高斯尺度空间的过程中,高斯滤波会将图像中的边界和细节信息等,连同噪声一起模糊化掉,因此,会造成一定程度上特征定位精度的损失

    为了克服高斯滤波的缺点,2012年,西班牙人 Pablo F. Alcantarilla 利用非线性扩散滤波代替高斯滤波,通过加性粒子分裂法 (Additive Operator Splitting) 构建了非线性尺度空间,提出了 KAZE 算法

    KAZE 是为了纪念“尺度空间分析之父” Iijima 而取得名字,在日语中是 “风” 的意思;AKAZE 是 Accelerated KAZE,顾名思义是 KAZE 的加速版本

      OpenCV 之 特征检测        OpenCV 之 特征检测

3.1  KAZE

     KAZE 的 create() 函数如下:

    /* The KAZE constructor */
    static Ptr<KAZE> create (
        bool extended = false,          // Set to enable extraction of extended (128-byte) descriptor
        bool upright = false,           // Set to enable use of upright descriptors (non rotation-invariant)
        float threshold = 0.001f,       // Detector response threshold to accept point
        int nOctaves = 4,               // Maximum octave evolution of the image
        int nOctaveLayers = 4,          // Default number of sublevels per scale level
        KAZE::DiffusivityType diffusivity = KAZE::DIFF_PM_G2  // Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or DIFF_CHARBONNIER
    );

3.2  AKAZE

     AKAZE 的 create() 函数如下:

    /* The AKAZE constructor */
    static Ptr<AKAZE> create(
        AKAZE::DescriptorType descriptor_type = AKAZE::DESCRIPTOR_MLDB, // Type of the extracted descriptor: DESCRIPTOR_KAZE, DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT.
        int descriptor_size = 0,                // Size of the descriptor in bits. 0 -> Full size
        int descriptor_channels = 3,            // Number of channels in the descriptor (1, 2, 3)
        float threshold = 0.001f,               // Detector response threshold to accept point
        int nOctaves = 4,                       // Maximum octave evolution of the image
        int nOctaveLayers = 4,                  // Default number of sublevels per scale level
        KAZE::DiffusivityType diffusivity = KAZE::DIFF_PM_G2  // Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or DIFF_CHARBONNIER
    );

 3.3  AKAZE vs ORB

    OpenCV Tutorials 中,有 ORB 和 AKAZE 的对比实验,从所选取的图像数据集来看,AKAZE 的检测效果优于 ORB

      OpenCV 之 特征检测

 

4  代码例程

    2004年 D. Lowe 提出 SIFT 算法后,在提高运算速度的方向上,先是诞生了比 SIFT 快3倍的 SURF,而后又在 SURF 的基础上改进出了 CenSurE,宣称可用于实时处理领域

    BRIEF 特征描述符,利用二进制串描述符,减少了对内存的占用,提高了匹配的速度,特别适合资源受限的场合,如嵌入式系统

    在 BRIEF 的基础上,ORB 结合 FAST 角点检测 和 BRIEF 描述符,BRISK 结合 AGAST 角点检测 和 BRIEF 描述符,真正实现了实时特征检测

    KAZE 和 AKAZE 针对高斯滤波的缺点,另辟蹊径,直接从 线性尺度空间 跳转到 非线性尺度空间,变换尺度空间后,重新定义了特征检测

    以上七种特征检测的算法,代码例程如下:

#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/xfeatures2d.hpp"

using namespace cv;

int main()
{
    // read
    Mat img = imread("messi.jpg");
    if (img.empty())
        return -1;

    // create and detect
    Ptr<SIFT> detector = SIFT::create();
    // Ptr<xfeatures2d::SURF> detector = xfeatures2d::SURF::create(400);
    // Ptr<xfeatures2d::StarDetector> detector = xfeatures2d::StarDetector::create(20, 20);
    // Ptr<ORB> detector = ORB::create(2000);
    // Ptr<BRISK> detector = BRISK::create();
    // Ptr<KAZE> detector = KAZE::create();
    // Ptr<AKAZE> detector = AKAZE::create();
    std::vector<KeyPoint>  keypoints;
    detector->detect(img, keypoints);

    // draw and show
    Mat img_keypoints;
    drawKeypoints(img, keypoints, img_keypoints);
    imshow("SIFT", img_keypoints);

    waitKey();
}

    各算法的检测效果对比如下:

    OpenCV 之 特征检测   OpenCV 之 特征检测   OpenCV 之 特征检测    

    OpenCV 之 特征检测   OpenCV 之 特征检测   OpenCV 之 特征检测   OpenCV 之 特征检测   

 

后记

    一开始酝酿本篇博客时,目标是将 OpenCV 中所有的特征检测算法,都阅读一遍原始论文,并弄懂 OpenCV 的代码实现,但随着阅读的深入,发现这几乎是不可能完成的任务。

    第一,自己非学术科研人员,没这么多时间和精力投入;第二,数学知识的薄弱,尤其是读到 KAZE 算法,涉及到非线性尺度空间,深感数学的博大精深和自身能力的瓶颈。

    “吾生也有涯,而知也无涯”,想到牛人如 David Lowe,一生最有名的也只是发明了 SIFT 算法,我等凡夫俗子更难以遑论,莫名间竟生出一些悲凉,继续写下去的动力消失殆尽  ...

    好在这几天想通了,重新认清自己的水平和定位,调整当初太过宏大的目标,改目标为 “介绍 OpenCV 中的特征检测算法和使用例程”,于是,便有了本篇文章 ^_^

   

参考资料

  SIFT 算法作者 David Lowe 的主页

  OpenCV-Python Tutorials / Feature Detection and Description / Introduction to SIFT (Scale-Invariant Feature Transform) 

  OpenCV-Python Tutorials / Feature Detection and Description / Introduction to SURF (Speeded-Up Robust Features)

  Censure: Center surround extremas for realtime feature detection and matching. In Computer Vision–ECCV 2008

  OpenCV-Python Tutorials / Feature Detection and Description / BRIEF (Binary Robust Independent Elementary Features)

  OpenCV-Python Tutorials / Feature Detection and Description / ORB (Oriented FAST and Rotated BRIEF)

  OpenCV Tutorials / 2D Features framework (feature2d module) / AKAZE and ORB planar tracking

  KAZE 和 AKAZE 作者 Pablo F. Alcantarilla 的个人主页 

 

上一篇:我在哪里可以找到同时符合OOP原则和SOLID原则的代码示例?


下一篇:java-在哪里捕获和处理空参数?