python-进阶-优雅的python写法

 

 

Python 这门语言最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净、整洁、一目了然。但有时候我们写代码,特别是 Python 初学者,往往还是按照其它语言的思维习惯来写,那样的写法不仅运行速度慢,代码读起来也费尽,给人一种拖泥带水的感觉,过段时间连自己也读不懂。

要写出 Pythonic(优雅的、地道的、整洁的)代码,还要平时多观察那些大牛代码,Github 上有很多非常优秀的源代码值得阅读,比如:requests、flask、tornado,笔者列举一些常见的 Pythonic 写法,希望能给你带来一点启迪。ps:我自己总结一些pythonic代码

1、变量交换

大部分编程语言中交换两个变量的值时,不得不引入一个临时变量:

>>> a = 1    # 初学者思维
>>> b = 2
>>> tmp = a
>>> a = b
>>> b = tmp

pythonic

>>> a, b = b, a      # pythonic思维

 


 

2、带有索引位置的集合遍历

遍历集合时如果需要使用到集合的索引位置时,直接对集合迭代是没有索引信息的,普通的方式使用:

colors = ['red', 'green', 'blue', 'yellow']

for i in range(len(colors)):
    print (i, '--->', colors[i])

pythonic

for i, color in enumerate(colors):    # 枚举
    print (i, '--->', color)

 


 

3、字符串连接

字符串连接时,普通的方式可以用 + 操作

names = ['raymond', 'rachel', 'matthew', 'roger',
         'betty', 'melissa', 'judith', 'charlie']

s = names[0]
for name in names[1:]:
    s += ', ' + name
print (s)

pythonic

print (', '.join(names))

join 是一种更加高效的字符串连接方式,使用 + 操作时,每执行一次+操作就会导致在内存中生成一个新的字符串对象,遍历8次有8个字符串生成,造成无谓的内存浪费。而用 join 方法整个过程只会产生一个字符串对象。


 

4、打开/关闭文件

执行文件操作时,最后一定不能忘记的操作是关闭文件,即使报错了也要 close。普通的方式是在 finnally 块中显示的调用 close 方法。

f = open('data.txt')
try:
    data = f.read()
finally:
    f.close()

pythonic

with open('data.txt') as f:
    data = f.read()

使用 with 语句,系统会在执行完文件操作后自动关闭文件对象。


 

5、列表推导式

能够用一行代码简明扼要地解决问题时,绝不要用两行,比如

result = []
for i in range(10):
    s = i*2
    result.append(s)

pythonic

[i*2 for i in range(10)]

与之类似的还有生成器表达式、字典推导式,都是很 pythonic 的写法。


 

6、善用装饰器

装饰器可以把与业务逻辑无关的代码抽离出来,让代码保持干净清爽,而且装饰器还能被多个地方重复利用。比如一个爬虫网页的函数,如果该 URL 曾经被爬过就直接从缓存中获取,否则爬下来之后加入到缓存,防止后续重复爬取。

def web_lookup(url, saved={}):
    if url in saved:
        return saved[url]
    page = urllib.urlopen(url).read()
    saved[url] = page
    return page

pythonic

import urllib #py2
#import urllib.request as urllib # py3

def cache(func):
    saved = {}

    def wrapper(url):
        if url in saved:
            return saved[url]
        else:
            page = func(url)
            saved[url] = page
            return page

    return wrapper

@cache
def web_lookup(url):
    return urllib.urlopen(url).read()

用装饰器写代码表面上感觉代码量更多,但是它把缓存相关的逻辑抽离出来了,可以给更多的函数调用,这样总的代码量就会少很多,而且业务方法看起来简洁了。


 

7、合理使用列表

列表对象(list)是一个查询效率高于更新操作的数据结构,比如删除一个元素和插入一个元素时执行效率就非常低,因为还要对剩下的元素进行移动

names = ['raymond', 'rachel', 'matthew', 'roger',
         'betty', 'melissa', 'judith', 'charlie']
names.pop(0)
names.insert(0, 'mark')

pythonic

from collections import deque
names = deque(['raymond', 'rachel', 'matthew', 'roger',
               'betty', 'melissa', 'judith', 'charlie'])
names.popleft()
names.appendleft('mark')

deque 是一个双向队列的数据结构,删除元素和插入元素会很快


 

8、序列解包

p = 'vttalk', 'female', 30, 'python@qq.com'

name = p[0]
gender = p[1]
age = p[2]
email = p[3]

pythonic

name, gender, age, email = p

 


 

9、遍历字典的 key 和 value

方法一速度没那么快,因为每次迭代的时候还要重新进行hash查找 key 对应的 value。

方法二遇到字典非常大的时候,会导致内存的消耗增加一倍以上

# 方法一
for k in d:
    print (k, '--->', d[k])

# 方法二
for k, v in d.items():
    print (k, '--->', v)

pythonic

for k, v in d.iteritems():
    print (k, '--->', v)

iteritems 返回迭代器对象,可节省更多的内存,不过在 python3 中没有该方法了,只有 items 方法,等值于 iteritems。参考自python之禅

上一篇:【TF-2-4】Tensorflow-模型和数据的保存和载入


下一篇:Django学习系列13:Django ORM和第一个模型