simpy仿真JS-AGV联合调度(考虑AGV运输时间的作业车间调度)小实验(一:演示框架)

        这个项目纯属小个人娱乐小项目,由于最近突然发现了一个比较好玩的第三方库simpy,由此引发了这一个小实验的灵感,本项目涉及内容:

        路径优化算法:A*算法(采用A*做一个无路径冲突的AGV调度),其中节点间距离采用曼哈顿距离。

        界面开发工具:tkinter

        仿真工具:simpy

        JS-AGV算例:3机器、3工件、2个AGV,不考虑AGV充电、考虑装卸站和路径冲突。

        实验的目的:做一个动态演示的排产过程以及AGV调度过程。

        实验扩展:后续有时间将采用强化学习来指导调度过程。

Machine=[
        [1,2,3],
        [2,3,1],
        [1,3,2],
    ]
    #机器在地图中的坐标
    Machine_site=[[4,1],[4,2],[4,3]]
    Processing_time=[
        [4,7,8],
        [5,2,3],
        [1,3,4]
    ]
    AGV_num=2

首先,搭建演示框架:

import simpy
import tkinter as tk

class Center:
    def __init__(self,Env,x=4,y=5):
        self.x=x
        self.y=y
        self.unit=70
        self.Origin = [1, 2]
        self.split = 5
        self.Hight = self.y - 1  # 4
        self.Width = self.x - 1  # 3
        self.build_JSP()

    def build_JSP(self):
        self.window = tk.Tk()

        self.window.title("Job shop scheduling simulation")
        self.window.geometry("{1}x{1}".format((self.Hight + 4) * self.unit
                                              , (self.Width + 9) * self.unit))
        self.canvas = tk.Canvas(bg="white", height=(self.Hight + 4) \
                                                   * self.unit, width=(self.Width + 9) * self.unit)

        # Grid Layout
        for c in range(0, (self.Width * self.unit + 1), self.unit):
            x0, y0, x1, y1 = self.Origin[0] * self.unit + c, self.Origin[1] * self.unit \
                , self.Origin[0] * self.unit + c, (self.Hight + self.Origin[1]) \
                             * self.unit
            self.canvas.create_line(x0, y0, x1, y1)

        for r in range(0, (self.Hight * self.unit + 1), self.unit):
            x0, y0, x1, y1 = self \
                                 .Origin[0] * self.unit, self.Origin[1] * self.unit + r \
                , (self.Width + self.Origin[0]) * self.unit \
                , self.Origin[1] * self.unit + r
            self.canvas.create_line(x0, y0, x1, y1)

        # Loading Point
        L = [[0, 2]]
        for i in range(len(L)):
            p1 = [(self.Origin[0] + L[i][0]) * self.unit - 5, (self.Origin[1] + self.Hight - L[i][1]) \
                  * self.unit - 5]
            p2 = [(self.Origin[0] + L[i][0]) * self.unit + 5, (self.Origin[1] + self.Hight - L[i][1]) \
                  * self.unit + 5]
            self.canvas.create_oval(p1[0], p1[1], p2[0], p2[1], fill="blue")
        # Unloading Point
        U = [[0, 1]]
        for i in range(len(U)):
            p1 = [(self.Origin[0] + U[i][0]) * self.unit - 5, (self.Origin[1] + self.Hight - U[i][1]) \
                  * self.unit - 5]
            p2 = [(self.Origin[0] + U[i][0]) * self.unit + 5, (self.Origin[1] + self.Hight - U[i][1]) \
                  * self.unit + 5]
            self.canvas.create_oval(p1[0], p1[1], p2[0], p2[1], fill="green")
        # P/D Point
        PD = [[2,1],[2,2],[2,3]]
        Machine_name=["M1","M2","M3"]
        #scheduling的布局
        self.canvas.create_rectangle( 4.1* self.unit,  2* self.unit, 11* self.unit,  6* self.unit \
                                     , fill="white")
        for i in range(len(PD)):
            p1 = [(self.Origin[0] + PD[i][0]) * self.unit - 5, (self.Origin[1] \
                                                                + self.Hight - PD[i][1]) * self.unit - 5]
            p2 = [(self.Origin[0] + PD[i][0]) * self.unit + 5, (self.Origin[1] \
                                                                + self.Hight - PD[i][1]) * self.unit + 5]

            self.canvas.create_rectangle(p1[0]-20, p1[1]-20, p2[0]+20, p2[1]+20 \
                                                  , fill="orange")
            self.canvas.create_text(p1[0]+5, p1[1]+5, text=Machine_name[i]
                                , font=("arial", 12), fill="black")
            self.canvas.create_rectangle(p1[0] - 20+1.7*self.unit, p1[1] - 20, p2[0] + 20+1.7*self.unit, p2[1] + 20 \
                                         , fill="red")
            self.canvas.create_text(p1[0] + 5+1.7*self.unit, p1[1] + 5, text=Machine_name[i]
                                    , font=("arial", 12), fill="black")
        # AS/RS]
        p = [0.5 * self.unit, 4.5 * self.unit]
        p1 = [0.1* self.unit, 5.5* self.unit]
        p2 = [1* self.unit,3.5* self.unit]
        self.canvas.create_rectangle(p1[0], p1[1], p2[0], p2[1] \
                                     , fill="yellow")
        self.canvas.create_text(p[0], p[1], text="AS/RS"
                                , font=("arial", 12), fill="black")

        self.canvas.create_rectangle(0* self.unit \
                                            , 0* self.unit, 1.6* self.unit \
                                            , 0.8* self.unit \
                                     , fill="gray")
        self.time = self.canvas.create_text(0.8 * self.unit \
                                            , 0.4 * self.unit, text="00:00" \
                                            , font=("arial", 20) \
                                            , fill="Blue")
        self.canvas.create_text(2.5*self.unit, 1.5*self.unit, text="SIMULATION SIDE"
                                , font=("arial", 12), fill="black")
        self.canvas.create_text(7.5 * self.unit, 1.5 * self.unit, text="SCHEDULING SIDE"
                                , font=("arial", 12), fill="black")
        self.canvas.pack()
        self.window.mainloop()

Env=simpy.Environment()
c=Center(Env)

得到界面框架如下: 

simpy仿真JS-AGV联合调度(考虑AGV运输时间的作业车间调度)小实验(一:演示框架)

上一篇:Less 运算篇


下一篇:scala之特质trait