如果直接考虑删哪条边最优似乎不太可做,于是考虑另一种想法:枚举删掉的边并快速地求出当前的直径。
对于环上的点,先把它的子树计算完毕,然后将最深的那条链接在这个点上,即记录每个点子树的最深深度,记为\(dep_i\)。然后枚举环上的节点\(x\),设\(dis_y\)表示从\(x\)开始顺时针到达\(y\)需要走多远(相当于将\(x\)和其逆时针遇到的第一个点之间的边删掉),那么当前的直径就是\(\max\limits_{dis_i < dis_j} {dep_i - dis_i + dep_j + dis_j}\),拿两个\(set\)把\(dep_i - dis_i\)、\(dep_i + dis_i\)记录起来取\(max\)。因为\(dis_i < dis_j \rightarrow dep_i - dis_i + dep_j + dis_j > dep_i + dis_i + dep_j - dis_j\),所以不会发生错位的情况。如果\(dep_i - dis_i\)和\(dep_i + dis_i\)在同一个\(i\)处取到最大值,就两个中一个选最大值、一个选次大值,两种方案取\(max\)
然后考虑换边,将枚举的点从\(x\)移到\(x\)顺时针方向的第一个点\(z\)。会发生改变的是\(dis\),设其改变到\(dis'\)。又设环长为\(cir\),那么\(dis'_x = cir - w(x,z)\),\(\forall y \neq x , dis'_y = dis_y - w(x,z)\)。所以直接修改\(dis_x\)为\(cir\)即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<vector>
#include<set>
//This code is written by Itst
using namespace std;
const int MAXN = 2e5 + 9;
struct Edge{
int end , upEd , w;
}Ed[MAXN << 1];
int head[MAXN] , N , cntEd = 1;
bool vis[MAXN];
inline void addEd(int a , int b , int c){
Ed[++cntEd] = (Edge){b , head[a] , c};
head[a] = cntEd;
}
int find(int x , int uped){
vis[x] = 1;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(i != (uped ^ 1))
if(!vis[Ed[i].end]){
int t = find(Ed[i].end , i);
if(t) return t == x ? 0 : t;
}
else
return Ed[i].end;
return vis[x] = 0;
}
long long sum , dp[MAXN] , len[MAXN] , cir = 1e18 , ans;
vector < int > incir;
bool pos[MAXN];
void dfs(int x , int p){
if(vis[x]) incir.push_back(x);
pos[x] = 1;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end] && Ed[i].end != p){
dfs(Ed[i].end , x);
ans = max(ans , dp[x] + dp[Ed[i].end] + Ed[i].w);
dp[x] = max(dp[x] , dp[Ed[i].end] + Ed[i].w);
}
else
if(vis[Ed[i].end] && !pos[Ed[i].end]){
len[Ed[i].end] = len[x] + Ed[i].w;
dfs(Ed[i].end , x);
}
}
#define PLI pair < long long , int >
#define st first
#define nd second
set < PLI > s1 , s2;
set < PLI > :: iterator it1 , it2;
void solve(){
for(int i = 0 ; i < incir.size() ; ++i){
s1.insert(PLI(dp[incir[i]] + len[incir[i]] , i));
s2.insert(PLI(dp[incir[i]] - len[incir[i]] , i));
}
for(int i = 0 ; i < incir.size() ; ++i){
it1 = --s1.end(); it2 = --s2.end();
if(it1->nd == it2->nd){
long long t = (--it1)->st + it2->st;
cir = min(cir , max(t , (++it1)->st + (--it2)->st));
}
else
cir = min(cir , it1->st + it2->st);
s1.erase(s1.find(PLI(dp[incir[i]] + len[incir[i]] , i)));
s2.erase(s2.find(PLI(dp[incir[i]] - len[incir[i]] , i)));
s1.insert(PLI(dp[incir[i]] + len[incir[i]] + sum , i));
s2.insert(PLI(dp[incir[i]] - len[incir[i]] - sum , i));
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
freopen("out","w",stdout);
#endif
cin >> N;
for(int i = 1 ; i <= N ; ++i){
int a , b , c;
cin >> a >> b >> c;
addEd(a , b , c); addEd(b , a , c);
}
find(1 , 0);
for(int i = 1 ; i <= N ; ++i)
if(vis[i]){
dfs(i , 0);
break;
}
for(int i = 0 ; i < incir.size() ; ++i)
for(int j = head[incir[i]] ; j ; j = Ed[j].upEd)
if(Ed[j].end == incir[(i + 1) % incir.size()]){
sum += Ed[j].w;
if(incir.size() > 2)
break;
}
if(incir.size() == 2) sum >>= 1;
solve();
cout << max(ans , cir);
return 0;
}