基于阿里云容器服务监控 Kubernetes集群GPU指标

简介

当您在阿里云容器服务中使用GPU ECS主机构建Kubernetes集群进行AI训练时,经常需要知道每个Pod使用的GPU的使用情况,比如每块显存使用情况、GPU利用率,GPU卡温度等监控信息,本文介绍如何快速在阿里云上构建基于Prometheus + Grafana的GPU监控方案。

Prometheus

Prometheus 是一个开源的服务监控系统和时间序列数据库。从 2012 年开始编写代码,再到 2015 年 github 上开源以来,已经吸引了 20k+ 关注,2016 年 Prometheus 成为继 k8s 后,第二名 CNCF(Cloud Native Computing Foundation) 成员。2018年8月 于CNCF毕业。
作为新一代开源解决方案,很多理念与 Google SRE 运维之道不谋而合。

基于阿里云容器服务监控 Kubernetes集群GPU指标

操作

前提

您已经通过阿里云容器服务创建了拥有GPU ECS的Kubernetes集群,并部署prometheus监控,具体步骤请参考:

部署Prometheus 的GPU 采集器

apiVersion: apps/v1
kind: DaemonSet
metadata:
  namespace: monitoring
  name: ack-prometheus-gpu-exporter
spec:
  selector:
    matchLabels:
      k8s-app: ack-prometheus-gpu-exporter
  template:
    metadata:
      labels:
        k8s-app: ack-prometheus-gpu-exporter
    spec:
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
            - matchExpressions:
              - key: aliyun.accelerator/nvidia_name
                operator: Exists
      hostPID: true
      containers:
      - name: node-gpu-exporter
        image: registry.cn-hangzhou.aliyuncs.com/acs/gpu-prometheus-exporter:0.1-5cc5f27
        imagePullPolicy: Always
        ports:
        - name: http-metrics
          containerPort: 9445
        env:
          - name: MY_NODE_NAME
            valueFrom:
              fieldRef:
                apiVersion: v1
                fieldPath: spec.nodeName
        resources:
          requests:
            memory: 50Mi
            cpu: 200m
          limits:
            memory: 100Mi
            cpu: 300m
        volumeMounts:
        - mountPath: /var/run/docker.sock
          name: docker-sock
      volumes:
      - hostPath:
          path: /var/run/docker.sock
          type: File
        name: docker-sock
        
---
apiVersion: v1
kind: Service
metadata:
  name: node-gpu-exporter
  namespace: monitoring
  labels:
    k8s-app: ack-prometheus-gpu-exporter
spec:
  type: ClusterIP
  ports:
  - name: http-metrics
    port: 9445
    protocol: TCP
  selector:
    k8s-app: ack-prometheus-gpu-exporter

---
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: ack-prometheus-gpu-exporter
  labels:
    release: ack-prometheus-operator
    app: ack-prometheus-gpu-exporter
  namespace: monitoring
spec:
  selector:
    matchLabels:
      k8s-app: ack-prometheus-gpu-exporter
  namespaceSelector:
    matchNames:
    - monitoring
  endpoints:
  - port: http-metrics
    interval: 30s

配置Grafana

访问Grafana监控面板

执行以下命令,将集群中的Grafana映射到本地3000端口。

kubectl -n monitoring port-forward svc/ack-prometheus-operator-grafana 3000:80

在浏览器中访问localhost:3000,即可访问Grafana。 默认账号密码为 admin/admin
基于阿里云容器服务监控 Kubernetes集群GPU指标

导入GPU监控配置
  1. 下载文件并解压,得到两个json文件:
    GPU 监控 Grafana配置
  2. 进入Grafana页面,点击Import dashboard:
    基于阿里云容器服务监控 Kubernetes集群GPU指标
  3. 第一步下载的json文件上传,选择数据源为Prometheus
    基于阿里云容器服务监控 Kubernetes集群GPU指标

导入完成后查看结果确认监控正常。

查看监控信息

节点GPU监控

基于阿里云容器服务监控 Kubernetes集群GPU指标

Pod GPU监控

基于阿里云容器服务监控 Kubernetes集群GPU指标

部署应用

如果您已经使用了Arena Arena - 打开KubeFlow的正确姿势) ,可以直接使用arena提交一个训练任务。

arena submit tf --name=style-transfer              \
              --gpus=1              \
              --workers=1              \
              --workerImage=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/neural-style:gpu \
              --workingDir=/neural-style \
              --ps=1              \
              --psImage=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/style-transfer:ps   \
              "python neural_style.py --styles /neural-style/examples/1-style.jpg --iterations 1000000"

NAME:   style-transfer
LAST DEPLOYED: Thu Sep 20 14:34:55 2018
NAMESPACE: default
STATUS: DEPLOYED

RESOURCES:
==> v1alpha2/TFJob
NAME                  AGE
style-transfer-tfjob  0s

提交任务成功后在监控页面里可以看到Pod的GPU相关指标, 能够看到我们通过Arena部署的Pod,以及pod里GPU 的资源消耗

基于阿里云容器服务监控 Kubernetes集群GPU指标

节点维度也可以看到对应的GPU卡和节点的负载, 在GPU节点监控页面可以选择对应的节点和GPU卡

基于阿里云容器服务监控 Kubernetes集群GPU指标

上一篇:FPGA加速广告CTR预估


下一篇:pyhton版本升级