from scipy import misc
import tensorflow as tf
import detect_face
import cv2
# import matplotlib.pyplot as plt
from PIL import Image
import os
# import scipy.misc
# %pylab inline
fin = 'D:\data\male'
fout = 'D:\data\\rain\male'
minsize = 20 # minimum size of face
threshold = [0.6, 0.7, 0.7] # three steps's threshold
factor = 0.709 # scale factor
margin = 44
frame_interval = 3
batch_size = 1000
image_size = 182
input_image_size = 160
print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(allow_growth=True)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = detect_face.create_mtcnn(sess, 'D:\\code\\real-time-deep-face-recognition-master\\20170512-110547')
i= 0
for file in os.listdir(fin):
try:
file_fullname = fin + '/' + file
img = misc.imread(file_fullname)
# i+= 1
# img = misc.imread(image_path)
bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
nrof_faces = bounding_boxes.shape[0] # 人脸数目
print(nrof_faces)
#print('找到人脸数目为:{}'.format(nrof_faces))
# print(bounding_boxes)
crop_faces = []
if nrof_faces != 0 :
for face_position in bounding_boxes:
face_position = face_position.astype(int)
print(face_position[0:4])
cv2.rectangle(img, (face_position[0], face_position[1]), (face_position[2], face_position[3]), (0, 255, 0), 2)
crop = img[face_position[1]:face_position[3],
face_position[0]:face_position[2], ]
# print(crop)
# crop = cv2.resize(crop, (96, 96), interpolation=cv2.INTER_CUBIC)
crop_faces.append(crop)
img2 = Image.open(file_fullname)
a = face_position[0:4]
# print('crop_faces:',crop_faces)
# a = [face_position[0:4]]
box = (a)
roi = img2.crop(box)
i = roi.resize((224, 224))
out_path = fout + '/' + file
i.save(out_path)
print('success')
else:
pass
except:
pass