图片相似度算法(Java实现)
在公司实习的时候接到一个任务:对视频抽帧生成的图片做去重处理。所以调研了一些有关计算图像相似度的算法,目前只是用于对图片做去重处理,加以改进或许可以实现以图搜图。下面进入正题:
差值哈希算法
主要流程
- 缩小尺寸为9*8
- 简化色彩,转变为灰度图
- 计算灰度差值
- 计算哈希值
代码
/**
* 差值哈希算法
* @param src
* @return
*/
public char[] dHash(BufferedImage src) {
int width = 9;
int height = 8;
BufferedImage image = this.resize(src,height,width);
int[] ints = new int[width * height];
int index = 0;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
int pixel = image.getRGB(j, i);
int gray = this.gray(pixel);
ints[index++] = gray;
}
}
StringBuilder builder = new StringBuilder();
for (int i = 0;i < height;i++){
for (int j = 0;j < width - 1;j++){
if (ints[9 * j + i] >= ints[9 * j + i + 1]){
builder.append(1);
}else {
builder.append(0);
}
}
}
return builder.toString().toCharArray();
}
/**
* 简化色彩
* @param rgb
* @return
*/
private int gray(int rgb) {
int a = rgb & 0xff000000;//将最高位(24-31)的信息(alpha通道)存储到a变量
int r = (rgb >> 16) & 0xff;//取出次高位(16-23)红色分量的信息
int g = (rgb >> 8) & 0xff;//取出中位(8-15)绿色分量的信息
int b = rgb & 0xff;//取出低位(0-7)蓝色分量的信息
rgb = (r * 77 + g * 151 + b * 28) >> 8; // NTSC luma,算出灰度值
//(int)(r * 0.3 + g * 0.59 + b * 0.11)
return a | (rgb << 16) | (rgb << 8) | rgb;//将灰度值送入各个颜色分量
}
/**
* 改变图片尺寸
* @param src 原图片
* @param height 目标高度
* @param width 目标宽度
* @return
*/
private BufferedImage resize(BufferedImage src, int height, int width) {
BufferedImage image = new BufferedImage(width, height, BufferedImage.TYPE_INT_BGR);
Graphics graphics = image.createGraphics();
graphics.drawImage(src, 0, 0, width, height, null);
return image;
}
以上代码求出了某张图片的灰度差值,如果要计算两张图片的相似度,只需要计算出两张图片灰度差值的汉明距离:
/**
* 计算汉明距离
* @param c1
* @param c2
* @return
*/
private int diff(char[] c1,char[] c2) {
int diffCount = 0;
for (int i = 0; i < c1.length; i++) {
if (c1[i] != c2[i]) {
diffCount++;
}
}
return diffCount;
}
均值哈希算法
主要流程
- 缩小尺寸为8*8
- 简化色彩,转变为灰度图
- 计算64个像素的灰度平均值
- 比较每个像素的灰度
- 计算哈希值
代码
/**
* 均值哈希算法
* @param src
* @return
*/
public char[] aHash(BufferedImage src) {
int width = 8;
int height = 8;
BufferedImage image = this.resize(src,height,width);
int total = 0;
int[] ints = new int[width * height];
int index = 0;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
int pixel = image.getRGB(j, i);
int gray = this.gray(pixel);
ints[index++] = gray;
total = total + gray;
}
}
StringBuffer res = new StringBuffer();
int grayAvg = total / (width * height);
for (int anInt : ints) {
if (anInt >= grayAvg) {
res.append("1");
} else {
res.append("0");
}
}
return res.toString().toCharArray();
}
简化色彩,缩小尺寸和比较汉明距离的代码和差值哈希算法里的一样,这里就不赘述了。
感知哈希算法
主要流程
- 缩小尺寸为8*8
- 简化色彩,转变为灰度图
- 计算DCT,得到32*32的DCT系数矩阵
- 缩小DCT,只保留左上角的8*8的矩阵
- 计算DCT的平均值
- 计算哈希值
代码
/**
* 感知哈希算法
* @param src
* @return
*/
public char[] pHash(BufferedImage src) {
int width = 8;
int height = 8;
BufferedImage image = this.resize(src,height,width);
int[] dctDate = new int[width * height];
int index = 0;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
int pixel = image.getRGB(j, i);
int gray = this.gray(pixel);
dctDate[index++] = gray;
}
}
dctDate = DCT.DCT(dctDate,width);
int avg = DCT.averageGray(dctDate ,width,height);
StringBuilder sb = new StringBuilder();
for(int i=0; i<height; i++) {
for(int j=0; j<width; j++) {
if(dctDate[i*height + j] >= avg) {
sb.append("1");
} else {
sb.append("0");
}
}
}
long result;
if(sb.charAt(0) == '0') {
result = Long.parseLong(sb.toString(), 2);
} else {
//如果第一个字符是1,则表示负数,不能直接转换成long,
result = 0x8000000000000000l ^ Long.parseLong(sb.substring(1), 2);
}
sb = new StringBuilder(Long.toHexString(result));
if(sb.length() < 16) {
int n = 16-sb.length();
for(int i=0; i<n; i++) {
sb.insert(0, "0");
}
}
return sb.toString().toCharArray();
}
/**
* 离散余弦变换
* @param pix 原图像的数据矩阵
* @param n 原图像(n*n)的高或宽
* @return 变换后的矩阵数组
*/
public static int[] DCT(int[] pix, int n) {
double[][] iMatrix = new double[n][n];
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
iMatrix[i][j] = (double)(pix[i*n + j]);
}
}
double[][] quotient = coefficient(n); //求系数矩阵
double[][] quotientT = transposingMatrix(quotient, n); //转置系数矩阵
double[][] temp = matrixMultiply(quotient, iMatrix, n);
iMatrix = matrixMultiply(temp, quotientT, n);
int newpix[] = new int[n*n];
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
newpix[i*n + j] = (int)iMatrix[i][j];
}
}
return newpix;
}
/**
* 矩阵转置
* @param matrix 原矩阵
* @param n 矩阵(n*n)的高或宽
* @return 转置后的矩阵
*/
private static double[][] transposingMatrix(double[][] matrix, int n) {
double nMatrix[][] = new double[n][n];
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
nMatrix[i][j] = matrix[j][i];
}
}
return nMatrix;
}
/**
* 求离散余弦变换的系数矩阵
* @param n n*n矩阵的大小
* @return 系数矩阵
*/
private static double[][] coefficient(int n) {
double[][] coeff = new double[n][n];
double sqrt = 1.0/Math.sqrt(n);
for(int i=0; i<n; i++) {
coeff[0][i] = sqrt;
}
for(int i=1; i<n; i++) {
for(int j=0; j<n; j++) {
coeff[i][j] = Math.sqrt(2.0/n) * Math.cos(i*Math.PI*(j+0.5)/(double)n);
}
}
return coeff;
}
/**
* 矩阵相乘
* @param A 矩阵A
* @param B 矩阵B
* @param n 矩阵的大小n*n
* @return 结果矩阵
*/
private static double[][] matrixMultiply(double[][] A, double[][] B, int n) {
double nMatrix[][] = new double[n][n];
double t;
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
t = 0;
for(int k=0; k<n; k++) {
t += A[i][k]*B[k][j];
}
nMatrix[i][j] = t;
}
}
return nMatrix;
}
/**
* 求灰度图像的均值
* @param pix 图像的像素矩阵
* @param w 图像的宽
* @param h 图像的高
* @return 灰度均值
*/
public static int averageGray(int[] pix, int w, int h) {
int sum = 0;
for(int i=0; i<h; i++) {
for(int j=0; j<w; j++) {
sum = sum+pix[i*w + j];
}
}
return sum/(w*h);
}
简化色彩,缩小尺寸和比较汉明距离的代码同上。
附
测试发现Java对图片的读取速度非常慢,所以引入了OpenCV对图片进行处理,以下为OpenCV处理图片的代码:
import com.image.DCT;
import org.opencv.core.*;
import org.opencv.imgproc.Imgproc;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import static org.opencv.imgcodecs.Imgcodecs.imread;
public class OpenCV {
/** 均值哈希算法
* @param src 图片路径
* @return
*/
public static char[] aHash(String src){
StringBuffer res = new StringBuffer();
try {
int width = 8;
int height = 8;
Mat mat = imread(src);
Mat resizeMat = new Mat();
Imgproc.resize(mat,resizeMat, new Size(width, height),0,0);
// 将缩小后的图片转换为64级灰度(简化色彩)
int total = 0;
int[] ints = new int[64];
int index = 0;
for (int i = 0;i < height;i++){
for (int j = 0;j < width;j++){
int gray = gray(resizeMat.get(i, j));
ints[index++] = gray;
total = total + gray;
}
}
// 计算灰度平均值
int grayAvg = total / (width * height);
// 比较像素的灰度
for (int anInt : ints) {
if (anInt >= grayAvg) {
res.append("1");
} else {
res.append("0");
}
}
}catch (Exception e){
e.printStackTrace();
}
return res.toString().toCharArray();
}
/** 感知哈希算法
* @param src
* @return
*/
public static char[] pHash(String src){
int width = 8;
int height = 8;
Mat mat = imread(src);
Mat resizeMat = new Mat();
Imgproc.resize(mat,resizeMat, new Size(width, height),0,0);
int[] dctDate = new int[width * height];
int index = 0;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
dctDate[index++] = gray(resizeMat.get(i, j));
}
}
dctDate = DCT.DCT(dctDate,width);
int avg = DCT.averageGray(dctDate ,width,height);
StringBuilder sb = new StringBuilder();
for(int i=0; i<height; i++) {
for(int j=0; j<width; j++) {
if(dctDate[i*height + j] >= avg) {
sb.append("1");
} else {
sb.append("0");
}
}
}
long result;
if(sb.charAt(0) == '0') {
result = Long.parseLong(sb.toString(), 2);
} else {
//如果第一个字符是1,则表示负数,不能直接转换成long,
result = 0x8000000000000000l ^ Long.parseLong(sb.substring(1), 2);
}
sb = new StringBuilder(Long.toHexString(result));
if(sb.length() < 16) {
int n = 16-sb.length();
for(int i=0; i<n; i++) {
sb.insert(0, "0");
}
}
return sb.toString().toCharArray();
}
/** 差值哈希算法
* @param src
* @return
*/
public static char[] dHash(String src){
int width = 9;
int height = 8;
Mat mat = imread(src);
Mat resizeMat = new Mat();
Imgproc.resize(mat,resizeMat, new Size(width, height),0,0);
int[] ints = new int[width * height];
int index = 0;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
ints[index++] = gray(resizeMat.get(i, j));
}
}
StringBuilder builder = new StringBuilder();
for (int i = 0;i < height;i++){
for (int j = 0;j < width - 1;j++){
if (ints[9 * j + i] >= ints[9 * j + i + 1]){
builder.append(1);
}else {
builder.append(0);
}
}
}
return builder.toString().toCharArray();
}
/** 简化色彩
* @param bgr
* @return
*/
private static int gray(double[] bgr) {
int rgb = (int) (bgr[2] * 77 + bgr[1] * 151 + bgr[0] * 28) >> 8;
int gray = (rgb << 16) | (rgb << 8) | rgb;
return gray;
}
/** 计算汉明距离
* @param c1
* @param c2
* @return
*/
private static int diff(char[] c1,char[] c2){
int diffCount = 0;
for (int i = 0; i < c1.length; i++) {
if (c1[i] != c2[i]) {
diffCount++;
}
}
return diffCount;
}