开发工具:Pycharm
开发语言:Python3.*
涉及到的三方库:cv2、random、numpy
1.打开一张图片
import cv2
image = cv2.imread("lena.tiff")
cv2.imshow("origin",image)
k = cv2.waitKey(0)
if k == 27:
cv2.destroyAllWindows()
效果:
2.图像转换为灰度图的两种方式:
方式一:
import cv2
image = cv2.imread("lena.tiff")
dst = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
cv2.imshow("gray",dst)
k = cv2.waitKey(0)
if k == 27:
cv2.destroyAllWindows()
方式二:通过写算法转换灰度图
import cv2
image = cv2.imread("lena.tiff") #读取一张图片
imgInfo = image.shape #获取图像的宽高信息
height = imgInfo[0] #图像宽度值
width = imgInfo[1] #图像高度值
for i in range(0,width):
for j in range(0,height):
r,g,b = image[i,j]
gray = (int(r)+int(g)+int(b))/3
image[i,j] = [gray,gray,gray]
cv2.imshow('gray',image)
k = cv2.waitKey(0)
if k == 27:
cv2.destroyAllWindows()
效果图:
注:
灰度图常见的有三种方式:
1.采用r\g\b 三个值中的一个值作为灰度值
2.将r、g、b加权求出一个值作为灰度图的灰度值
3.r、g、b求出均值作为灰度值
参考链接:https://blog.csdn.net/saltriver/article/details/79677116
这里就不附代码了
3.灰度图二值化图像
import cv2
image = cv2.imread("lena.tiff") #读取一张图片
imgInfo = image.shape #获取图像的宽高信息
height = imgInfo[0] #图像宽度值
width = imgInfo[1] #图像高度值
valve = 140 #阈值
grayImage = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
for i in range(0,width):
for j in range(0,height):
r,g,b = image[i,j]
gray = (int(r)+int(g)+int(b))/3
if valve<gray:
image[i, j] = [255, 255, 255]
else:
image[i, j] = [0, 0, 0]
cv2.imshow('bina_gray',image)
k = cv2.waitKey(0)
if k == 27:
cv2.destroyAllWindows()
4.高斯模糊图像
import cv2
image = cv2.imread("lena.tiff") #读取一张图片
imgInfo = image.shape #获取图像的宽高信息
height = imgInfo[0] #图像宽度值
width = imgInfo[1] #图像高度值
dst = cv2.GaussianBlur(image,(9,9),4.5)
cv2.imshow('GaussianBlur',dst)
k = cv2.waitKey(0)
if k == 27:
cv2.destroyAllWindows()
效果图:
5.Canny 边缘检测
import cv2
image = cv2.imread("lena.tiff") #读取一张图片
imgInfo = image.shape #获取图像的宽高信息
height = imgInfo[0] #图像宽度值
width = imgInfo[1] #图像高度值
edges = cv2.Canny(image,200,500)
cv2.imshow('Canny Detect',edges)
k = cv2.waitKey(0)
if k == 27:
cv2.destroyAllWindows()
效果图: