Hadoop学习之路(5)Mapreduce程序完成wordcount

程序使用的测试文本数据

Dear River
Dear River Bear Spark 
Car Dear Car Bear Car
Dear Car River Car 
Spark Spark Dear Spark 

1编写主要类

(1)Maper类

首先是自定义的Maper类代码

public class WordCountMap extends Mapper<LongWritable, Text, Text, IntWritable> {
    public void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        //fields:代表着文本一行的的数据: dear bear river
        String[] words = value.toString().split("\t");
        for (String word : words) {
            // 每个单词出现1次,作为中间结果输出
            context.write(new Text(word), new IntWritable(1));
        }
    }
}

     这个Map类是一个泛型类型,它有四个形参类型,分别指定map()函数的输入键、输入值、输出键和输出值的类型。LongWritable:输入键类型,Text:输入值类型,Text:输出键类型,IntWritable:输出值类型.
     String[] words = value.toString().split("\t");,words 的值为Dear River Bear River
     输入键key是一个长整数偏移量,用来寻找第一行的数据和下一行的数据,输入值是一行文本Dear River Bear River,输出键是单词Bear ,输出值是整数1
     Hadoop本身提供了一套可优化网络序列化传输的基本类型,而不直接使用Java内嵌的类型。这些类型都在org.apache.hadoop.io包中。这里使用LongWritable类型(相当于Java的Long类型)、Text类型(相当于Java中的String类型)和IntWritable类型(相当于Java的Integer类型)。
     map()方法的参数是输入键和输入值。以本程序为例,输入键LongWritable key是一个偏移量,输入值Text valueDear Car Bear Car ,我们首先将包含有一行输入的Text值转换成Java的String类型,之后使用substring()方法提取我们感兴趣的列。map()方法还提供了Context实例用于输出内容的写入。

(2)Reducer类

public class WordCountReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
    /*
        (River, 1)
        (River, 1)
        (River, 1)
        (Spark , 1)
        (Spark , 1)
        (Spark , 1)
        (Spark , 1)

        key: River
        value: List(1, 1, 1)
        key: Spark
        value: List(1, 1, 1,1)

    */
    public void reduce(Text key, Iterable<IntWritable> values,
                          Context context) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable count : values) {
            sum += count.get();
        }
        context.write(key, new IntWritable(sum));// 输出最终结果
    };
}

Reduce任务最初按照分区号从Map端抓取数据为:
(River, 1)
(River, 1)
(River, 1)
(spark, 1)
(Spark , 1)
(Spark , 1)
(Spark , 1)
经过处理后得到的结果为:
key: hello value: List(1, 1, 1)
key: spark value: List(1, 1, 1,1)
所以reduce()函数的形参 Iterable&lt;IntWritable&gt; values 接收到的值为List(1, 1, 1)List(1, 1, 1,1)

(3)Main函数

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;

public class WordCountMain {
    //若在IDEA中本地执行MR程序,需要将mapred-site.xml中的mapreduce.framework.name值修改成local
    public static void main(String[] args) throws IOException,
            ClassNotFoundException, InterruptedException {
        if (args.length != 2 || args == null) {
            System.out.println("please input Path!");
            System.exit(0);
        }
        //System.setProperty("HADOOP_USER_NAME","hadoop2.7");
        Configuration configuration = new Configuration();
        //configuration.set("mapreduce.job.jar","/home/bruce/project/kkbhdp01/target/com.kaikeba.hadoop-1.0-SNAPSHOT.jar");
        //调用getInstance方法,生成job实例
        Job job = Job.getInstance(configuration, WordCountMain.class.getSimpleName());
        // 打jar包
        job.setJarByClass(WordCountMain.class);

        // 通过job设置输入/输出格式
        // MR的默认输入格式是TextInputFormat,所以下两行可以注释掉
        // job.setInputFormatClass(TextInputFormat.class);
        // job.setOutputFormatClass(TextOutputFormat.class);
        // 设置输入/输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 设置处理Map/Reduce阶段的类
        job.setMapperClass(WordCountMap.class);
        //map combine减少网路传出量
        job.setCombinerClass(WordCountReduce.class);
        job.setReducerClass(WordCountReduce.class);

        //如果map、reduce的输出的kv对类型一致,直接设置reduce的输出的kv对就行;如果不一样,需要分别设置map, reduce的        输出的kv类型
        //job.setMapOutputKeyClass(.class)
        // job.setMapOutputKeyClass(Text.class);
        // job.setMapOutputValueClass(IntWritable.class);

        // 设置reduce task最终输出key/value的类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        // 提交作业
        job.waitForCompletion(true);

    }
}

2本地运行

首先更改mapred-site.xml文件配置
将mapreduce.framework.name的值设置为local
Hadoop学习之路(5)Mapreduce程序完成wordcount
然后本地运行:
Hadoop学习之路(5)Mapreduce程序完成wordcount
查看结果:
Hadoop学习之路(5)Mapreduce程序完成wordcount

3集群运行

方式一:

首先打包
Hadoop学习之路(5)Mapreduce程序完成wordcount
更改配置文件,改成yarn模式
Hadoop学习之路(5)Mapreduce程序完成wordcount
添加本地jar包位置:

 Configuration configuration = new Configuration();
 configuration.set("mapreduce.job.jar","C:\\Users\\tanglei1\\IdeaProjects\\Hadooptang\\target");

Hadoop学习之路(5)Mapreduce程序完成wordcount
设置允许跨平台远程调用:

configuration.set("mapreduce.app-submission.cross-platform","true");

Hadoop学习之路(5)Mapreduce程序完成wordcount
修改输入参数:
Hadoop学习之路(5)Mapreduce程序完成wordcount
运行结果:
Hadoop学习之路(5)Mapreduce程序完成wordcount

方式二:

将maven项目打包,在服务器端用命令运行mr程序

hadoop jar com.kaikeba.hadoop-1.0-SNAPSHOT.jar
com.kaikeba.hadoop.wordcount.WordCountMain /tttt.txt  /wordcount11
上一篇:Crossing River POJ - 1700


下一篇:River Hopscotch POJ - 3258