linux服务器开发二(系统编程)--线程相关

线程概念

什么是线程

  • LWP:Light Weight Process,轻量级的进程,本质仍是进程(在Linux环境下)。
  • 进程:独立地址空间,拥有PCB。
  • 线程:也有PCB,但没有独立的地址空间(共享)。
  • 进程与线程的区别:在于是否共享地址空间。
    • 独居(进程)。
    • 合租(线程)。
  • Linux下:
    • 线程:最小的执行单位。
    • 进程:最小分配资源单位,可看成是一个线程的进程。

linux服务器开发二(系统编程)--线程相关

  • 安装man文档

    sudo apt-get install glibc-doc
    sudo apt-get install manpages-posix-dev
    

Linux内核线程实现原理

  • 类Unix系统中,早期是没有“线程”概念的,80年代才引入,借助进程机制实现出了线程的概念。因此在这类系统中,进程和线程关系密切。
  • 1、轻量级进程(light-weight process),也有PCB,创建线程使用的底层函数和进程一样,都是clone。
  • 2、从内核里看进程和线程是一样的,都有各自不同的PCB,但是PCB中指向内存资源的三级页表是相同的。
  • 3、进程可以蜕变成线程。
  • 4、线程可看做寄存器和栈的集合。
  • 5、在Linux下,线程是最小的执行单位;进程是最小的分配资源单位。
  • 察看LWP号:ps -Lf pid,查看指定线程的LWP号。

linux服务器开发二(系统编程)--线程相关

  • 三级映射:进程PCB --> 页目录(可看成数组,首地址位于PCB中) --> 页表 --> 物理页面 --> 内存单元
    • 参考《Linux内核源代码情景分析》 -- 毛德操

linux服务器开发二(系统编程)--线程相关

  • 对于进程来说,相同的地址(同一个虚拟址)在不同的进程中,反复使用而不冲突。原因是他们虽虚拟址一样,但页目录、页表、物理页面各不相同。相同的虚拟址,映射到不同的物理页面内存单元,最终访问不同的物理页面。
  • 但线程不同!两个线程具有各自独立的PCB,但共享同一个页目录,也就共享同一个页表和物理页面。所以两个PCB共享一个地址空间。
  • 实际上,无论是创建的fork,还是创建线程的pthread_create,底层实现都是调用同一个内核函数clone。
  • 如果复制对方的地址空间,那么就产生一个“进程”;如果共享对方的地址空间,就产生一个“线程”。
  • 因此:Linux内核是不区分进程和线程的。只有用户层面上进行区分。所以,线程所有操作函数pthread_*是库函数,而非系统调用。

线程共享资源

  • 1、文件描述符表
  • 2、每种信号的处理方式。
  • 3、当前工作目录。
  • 4、用户ID和组ID。
  • 5、内存地址空间(.text/.data/.bss/heap/共享库)

线程非共享资源

  • 1、线程ID。
  • 2、处理器现场和栈指针。
  • 3、独立的栈空间(用户空间栈)。
  • 4、errno变量.
  • 5、信号屏蔽字。
  • 6、调度优先级。

线程优点、缺点

  • 优点
    • 1、提高程序并发性。
    • 2、开销小。
    • 3、数据通信、共享数据方便。
  • 缺点
    • 1、库函数,不稳定。
    • 2、调试、编写困难、gdb不支持。
    • 3、对信号支持不好。
  • 优点相对突出,缺点均不是硬伤。Linux下由于实现方法导致进程、线程差别不是很大。

线程控制原语

pthread_self函数

  • 获取线程ID。其作用对应进程中getpid()函数。
  • pthread_t pthread_self(void); - 返回值:成功:0;失败:无!
  • 线程ID:pthread_t类型,本质:在Linux下为无符号整数(%lu),其他系统中可能是结构体实现。
  • 线程ID是进程内部,识别标志。(两个进程间,线程ID允许相同)。
  • 注意:不应使用全局变量pthread_t tid,在子线程中通过pthread_create传出参数来获取线程ID,而应使用pthread_self。

pthread_create函数

  • 创建一个新线程。其作用,对应进程中fork()函数。
  • int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg);
  • 返回值:成功:0;失败:错误号。Linux环境下,所有线程特点,失败均直接返回错误号。
  • 参数
    • pthread_t:当前Linux中可理解为:typedef unsigned long int pthread_t;
    • 参数1:传出参数,保存系统为我们分配好的线程ID。
    • 参数2:通常传NULL,表示使用线程默认属性。若想使用具体属性也可以修改该参数。
    • 参数3:函数指针,指向线程主函数(线程体),该函数运行结束,则线程结束。
    • 参数4:线程主函数执行期间所使用的参数。
  • 在一个线程中调用pthread_create()创建新的线程后,当前线程从pthread_create()返回继续往下执行,而新的线程所执行的代码由我们传给pthread_create的函数指针start_routine决定。start_routine函数接收一个参数,是通过pthread_create的arg参数传递给它的,该参数的类型为void *,这个指针按什么类型解释由调用者自己定义。start_routine返回时,这个线程就退出了,其它线程可以调用pthread_join得到start_routine的返回值,类似于父进程调用wait(2)得到子进程的退出状态,稍后详细介绍pthread_join。
  • pthread_create成功返回后,新创建的线程ID被填写到thread参数指向的内存单元。我们知道进程ID的类型是pid_t,每个进程的ID在整个系统中是唯一的,调用getpid(2)可以获得当前进程ID,是一个正整数值。线程ID的类型是thread_t,它只是当前进程中保证是唯一的,不同的系统中thread_t这个类型有不同的实现,这可能是一个整数值,也可能是一个结构体,也可能是一个地址,所以不能简单地当成整数用printf打印,调用pthread_self(3)可以获得当前线程的ID。
  • attr参数表示线程属性,本节不深入讨论线程属性,所有代码例子都传NULL给attr参数,表示线程属性取缺省值,感兴趣的读者可以参考APUE。
  • 【练习】:创建一个新线程,打印线程ID。注意:链接线程库-lpthread

    • 由于pthread_create的错误码不保存在errno中,因此不能直接用perror(3)打印错误信息,可以先用strerror(3)把错误码转换成错误信息再打印。如果任意一个线程调用了exit或_exit,则整个进程的所有线程都会终止,由于从main函数return也相当于调用exit,为了防止新创建的线程还没有得到执行就终止,我们在main函数return之前延时1秒,这只是一种权宜之计,即使主线程等待1秒,内核也不一定会调度新创建的线程执行,下一节我们会看到更好的方法。
  • 示例

    #include <stdio.h>
    #include <stdlib.h>
    #include <unistd.h>
    #include <pthread.h>
    #include <string.h>                                                                                   
    
    void *thread_func(void *arg)
    {
        printf("In thread: thread id = %lu, pid = %u\n", pthread_self(), getpid());
        return NULL;
    }
    
    int main()
    {
        pthread_t tid;
        int ret;
    
        printf("In main1: thread id = %lu, pid = %u\n", pthread_self(), getpid());
    
        ret = pthread_create(&tid, NULL, thread_func, NULL);
        if(ret != 0){
            fprintf(stderr, "pthread_create error:%s\n", strerror(ret));
            exit(1);
        } 
    
        sleep(1);
        printf("In main2: thread id = %lu, pid = %u\n", pthread_self(), getpid());
        return 0;
    }
    
  • 【练习】:循环创建多个线程,每个线程打印自己是第几个被创建的线程。(类似于进程循环创建子进程)

  • 拓展思考:将pthread_create函数参数4修改为(void *)&i,将线程主函数内改为i = *((int *)arg)是否可以?不可以。
  • 示例

    #include <stdio.h>
    #include <stdlib.h>
    #include <unistd.h>
    #include <pthread.h>
    #include <string.h>
    
    void *thread_func(void *arg)
    {
        int i = (int)arg;
        sleep(i);
        printf("%dth thread: thread id = %lu, pid = %u\n", i+1, pthread_self(), getpid());
        return NULL;
    }
    
    int main()
    {
        pthread_t tid;
        int ret, i;
    
        for (i = 0; i<5; i++){
            ret = pthread_create(&tid, NULL, thread_func, (void *)i);
            if(ret != 0){
                fprintf(stderr, "pthread_create error:%s\n", strerror(ret));
                exit(1);        }
        }   
    
        sleep(i);
        return 0;
    }
    
  • 线程与共享

    • 线程间共享全局变量
    • 【牢记】:线程默认共享数据段、代码段等地址空间,常用的是全局变量。而进程不共享全局变量,只能借助mmap。
    • 【练习】:设计程序,验证线程之间共享全局数据。

      #include <stdio.h>
      #include <pthread.h>
      #include <stdlib.h>
      #include <unistd.h>
      
      int var = 100;
      
      void *tfn(void *arg)
      {
          var = 200;
          printf("thread\n");
          return NULL;
      }
      
      int main(void)
      {
          printf("At first var = %d\n", var);
      
          pthread_t tid;
          pthread_create(&tid, NULL, tfn, NULL);
          sleep(1);
      
          printf("After pthread_create, var = %d\n", var);
          return 0;
      }
      

pthread_exit函数

  • 将单个线程退出。
  • void pthread_exit(void *retval);
    • 参数:retval表示线程退出状态,通常传NULL。
  • 思考:使用exit将指定线程退出,可以吗?
  • 结论:线程中,禁止使用exit函数,会导致进程内所有线程全部退出。
  • 在不添加sleep控制输出顺序的情况下,pthread_create在循环中,几乎瞬间创建5个线程,但只有第1个线程有机会输出(或者第2个也有,也可能没有,取决于内核调度),如果第3个线程执行了exit,将整个进程退出了,所以全部线程退出了。
  • 所以,多线程环境中,应尽量少用,或者不使用exit函数,取而代之使用pthread_exit函数,将单个线程退出。任何线程里exit导致进程退出,其他线程未工作结束,主控线程退出时不能return或exit。
  • 另注意:pthread_exit或者return返回的指针所指向的内存单元必须是全局的或者是用malloc分配的,不能在线程函数的栈上分配,因为当其它线程得到这个返回指针时线程函数已经退出了。
  • 【练习】:编写多线程程序,总结exit、return、pthread_exit各自退出效果。
    • return:返回到调用者那里去。
    • pthread_exit:将调用该函数的线程退出。
    • exit:将进程退出。
  • 示例

    #include <stdio.h>
    #include <stdlib.h>
    #include <unistd.h>
    #include <pthread.h>
    #include <string.h>
    
    void *thread_func(void *arg)
    {
        int i = (int)arg;
        printf("%dth thread: thread id = %lu, pid = %u\n", i+1, pthread_self(), getpid());
        return NULL;
    }
    
    int main()
    {
        pthread_t tid;
        int ret, i;
    
        for (i = 0; i<5; i++){
            ret = pthread_create(&tid, NULL, thread_func, (void *)i);
            if(ret != 0){
                fprintf(stderr, "pthread_create error:%s\n", strerror(ret));
                exit(1);
            }
        }                                                                                                 
    
        pthread_exit(NULL);
    }
    

pthread_join函数

  • 阻塞等待线程退出,获取线程退出状态。其作用,对应进程中waitpid()函数。
  • int pthread_join(pthread_t thread, void **retval); 成功:0;失败:错误号。
  • 参数:thread:线程ID(【注意】不是指针); retval:存储线程结束状态。
  • 对比记忆:
    • 进程中:main返回值、exit参数-->int;等待子进程结束, wait函数参数-->int *
    • 线程中:线程主函数返回值、pthread_exit-->void *;等待线程结束 pthread_join函数参数-->void **
  • 【练习】:参数retval非空用法。

    #include <stdio.h>
    #include <unistd.h>
    #include <stdlib.h>
    #include <pthread.h>
    
    typedef struct{
        int a;
        int b;
    } exit_t;
    
    void *tfn(void *arg)
    {
        exit_t * ret;
        ret = malloc(sizeof(exit_t));
    
        ret->a = 100;
        ret->b = 300;
    
        pthread_exit((void *)ret);
    }
    
    int main(void)
    {
        pthread_t tid;
        exit_t * retval;
    
        pthread_create(&tid, NULL, tfn, NULL);
    
        //调用pthread_join可以获取线程的退出状态
        pthread_join(tid, (void **)&retval);
        printf("a = %d, b = %d\n", retval->a, retval->b);
    
        free(retval);
        return 0;
    }
    
  • 调用该函数的线程将挂起等待,直到ID为thread的线程终止。thread线程以不同的方法终止,通过pthread_join得到的终止状态是不同的,总结如下:

    • 1、如果不thread线程通过return返回,retval所指向的单元里存放的是thread线程函数的返回值。
    • 2、如果thread线程被别的线程调用pthread_cancel异常终止掉,retval所指向的单元里存放的是常数PTHREAD_CALCELED。
    • 3、如果thread线程是自己调用pthread_exit终止的,retval所指向的单元存放的是传给pthread_exit的参数。
    • 4、如果对thread线程的终止状态不感兴趣,可以传NULL给retval参数。
  • 【练习】:使用pthread_join函数将循环创建的多个子线程回收。

    #include <stdio.h>
    #include <stdlib.h>
    #include <unistd.h>
    #include <pthread.h>
    
    int var = 100;
    
    void * tfn(void * arg)
    {
        int i;
        i = (int)arg;
    
        sleep(i);
        if(i == 1){
            var = 333;
            printf("var = %d\n", var);
            return var;
        } else if (i == 3)
        {
            var = 777;
            printf("I'm %dth pthread, pthread_id = %lu\n  var = %d\n", i+1, pthread_self(), var);
            pthread_exit((void *)var);
        } else {
            printf("I'm %dth pthread, pthread_id = %lu\n  var = %d\n", i+1, pthread_self(), var);
            pthread_exit((void *)var);
        }   
    
        return NULL;
    }
    
    int main(void)
    {
        pthread_t tid[5];
        int i;
        int *ret[5];
    
        for(i = 0; i < 5; i++)
            pthread_create(&tid[i], NULL, tfn, (void *)i);
    
        for(i = 0; i < 5; i++){
            pthread_join(tid[i], (void **)&ret[i]);
            printf("-------%d 's ret = %d\n'", i, (int)ret[i]);
        }
    
        printf("I'm main pthread tid = %lu\t var = %d\n", pthread_self(), var);
    
        sleep(i);
        return 0;
    }
    

pthread_detach函数

  • 实现线程分隔
  • int pthread_detach(pthread_t thread);,成功:0;失败:错误号。
  • 线程分离状态:指定该状态,线程主动与主控线程断开关系。线程结束后,其退出状态不由其他线程获取,而直接自己自动释放。网络、多线程服务器常用。
  • 进程若有该机制,将不会产生僵尸进程。僵尸进程的产生主要由于进程死后,大部分资源被释放,一点残留资源存于系统中,导致内核认为该进程仍存在。
  • 也可以使用pthread_create函数参2(线程属性)来设置线程分离。
  • 【练习】:使用pthread_detach函数实现线程分离。
  • 一般情况下,线程终止后,其终止状态一直保留到其它线程调用pthread_join获取它的状态为止。但是线程也可以被置为detach状态,这样的线程一旦终止就立刻回收它占用的所有资源,而不保留终止状态。不能对一个已经处于detach状态的线程调用pthread_join,这样的调用将返回EINVAL错误。也就是说,如果已经对一个线程调用了pthread_detach就不能再调用pthread_join了。

    #include <stdio.h>
    #include <stdlib.h>
    #include <unistd.h>
    #include <string.h>
    #include <pthread.h>
    
    void *tfn(void *arg)
    {
        int n = 3;
        while(n--){
            printf("thread count %d\n", n);
            sleep(1);
        }   
    
        return (void *)1;
    }
    
    int main(void)
    {
        pthread_t tid;
        void *tret;
        int err;
    
    #if 0
        //通过线程属性来设置游离态
        pthread_attr_t attr;
        pthread_attr_init(&attr);
        pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
        pthread_create(&tid, &attr, tfn, NULL);
    #else
        pthread_create(&tid, NULL, tfn, NULL);
        //让线程分离-----自动退出,无系统残留资源
        pthread_detach(tid);
    #endif
    
        while(1){
            err = pthread_join(tid, &tret);
            printf("------------err = %d\n", err);
            if(err != 0)
                fprintf(stderr, "thread_join error : %s\n", strerror(err));
            else
                fprintf(stderr, "thread exit code %d\n", (int)tret);
        }
    }
    

pthread_cancel函数

  • 杀死(取消)线程。其作用,对应进程中kill()函数。
  • int pthread_cancel(pthread_t thread);,成功:0;失败:错误号。
  • 【注意】:线程的取消并不是实时的,而有一定的延时。需要等待线程到达某个取消点(检查点)。
  • 类似于玩游戏存档,必须到达指定的场所(存档点,如:客栈、仓库、城里等)才能存储进度。杀死线程也不是立刻就能完成,必须要到达取消点。
  • 取消点:是线程检查是否被取消,并按请求进行动作的一个位置。通常是一些系统调用create、open、pause、close、read、write...执行命令man 7 pthreads可以查看具备这些取消点的系统调用列表。也可参阅APUE.12.7取消选项小节。
  • 可粗略认为一个系统调用(进入内核)即为一个取消点。如线程中没有取消点,可以通过调用pthread_testcancel函数自行设置一个取消点。
  • 被取消的线程,退出值定义在Linux的pthread库中。常数PTHREAD_CANCELED的值是-1。可以头文件pthread.h中找到它的定义:#define PTHREAD_CANCELED((void *)-1)。因此当我们对一个已经被取消的线程使用pthread_join回收时,得到的返回值为-1。
  • 【练习】:终止线程的三种方法。注意“取消点”的概念。

    #include <stdio.h>
    #include <unistd.h>
    #include <pthread.h>
    #include <stdlib.h>
    
    void *tfn1(void *arg)
    {
        printf("thread 1 returning\n");
        return (void *)111;
    }
    
    void *tfn2(void *arg)
    {
        printf("thread 2 exiting\n");
        pthread_exit((void *)222);
    }
    
    void *tfn3(void *arg)
    {
        while(1){
            //printf("thread 3: I'm going to die in 3 seconds ... \n");
            //sleep(1);
            pthread_testcancel(); //自己添加取消点
        }   
    
        return (void *)666;
    }
    
    int main()
    {
        pthread_t tid;
        void *tret = NULL;
    
        pthread_create(&tid, NULL, tfn1, NULL);
        pthread_join(tid, &tret);
        printf("thread 1 exit code = %d\n\n", (int)tret);
    
        pthread_create(&tid, NULL, tfn2, NULL);
        pthread_join(tid, &tret);
        printf("thread 2 exit code = %d\n\n", (int)tret);
    
        pthread_create(&tid, NULL, tfn3, NULL);
        sleep(3);
        pthread_cancel(tid);
        pthread_join(tid, &tret);
        printf("thread 3 exit code = %d\n", (int)tret);
    }
    

pthread_equal函数

  • 比较两个线程ID是否相等。
  • int pthread_equal(pthread_t t1, pthread_t t2);
  • 有可能Linux在未来线程ID pthread_t类型被修改为结构体实现。

控制原语对比

    进程              线程
    fork            pthread_create      创建
    exit            pthread_exit        退出
    wait            pthread_join        等待
    kill            pthread_cancel      杀死
    getpid          pthread_self        取得ID
                    pthread_detach      分离

线程属性

  • 本节作为指引性介绍,Linux下线程的属性是可以根据实际项目需要进行设置,之前我们讨论的线程都是采用线程的默认属性,默认属性已经可以解决绝大多数开发时遇到的问题。如我们对程序的性能提出更高的要求,那么需要设置线程属性,比如可以通过设置线程栈的大小来降低内存的使用,增加最大线程个数。 typedef struct{ int etachstate; //线程的分离状态 int schedpolicy; //线程调度策略 struct sched_param schedparam; //线程的调度参数 int inheritsched; //线程的继承性 int scope; //线程的作用域 size_t guardsize; //线程栈末尾的警戒缓冲区大小 int stackaddr_set; //线程的栈设置 void* stackaddr; //线程的位置 size_t stacksize; //线程的大小 } pthread_attr_t;

  • 主要结构体成员

    • 1、线程分离状态
    • 2、线程栈大小(默认平均分配)
    • 3、线程栈警戒缓冲区大小(位于栈末尾)
  • 属性值不能直接设置,须使用相关函数进行操作,初始化的函数为pthread_attr_init,这个函数必须在pthread_create函数之前调用。之后须用pthread_attr_destroy函数来释放资源。
  • 线程属性主要包括如下属性:作用域(scope)、栈尺寸(stack size)、栈地址(stack address)、优先级(priority)、分离的状态(detached state)、调度策略和参数(scheduling policy and parameters)。默认的属性为非绑定、非分离、缺省的堆栈、与父进程同样级别的优先级。

线程属性初始化

  • 注意:应先初始化线程属性,再pthread_create创建线程。
  • 初始化线程属性。
    • int pthread_attr_init(pthread_attr_t *attr);,成功:0; 失败:错误号。
  • 销毁线程属性所占用的资源。
    • int pthread_attr_destroy(pthread_attr_t *attr);,成功:0;失败:错误号。

线程的分离状态

  • 线程的分离状态决定一个线程以什么样的方式来终止自己。
  • 非分离状态:线程的默认属性是非分离状态,这种情况下,原有的线程等待创建的线程结束。只有当pthread_join()函数返回时,创建的线程才算终止,才能释放自己占用的系统资源。
  • 分离状态:分离线程没有被其他的线程等待,自己运行结束了,线程也就终止了,马上释放系统资源。应该根据自己的需要,选择适当的分离状态。
  • 线程分离状态的函数:
  • 设置线程属性,分离or非分离。
    • int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);
  • 获取线程属性,分离or非分离
    • int pthread_attr_getdetachstate(pthread_attr_t *attr, int *detachstate);
    • 参数:
      • attr:已经初始化的线程属性
      • detachstate:
        • PTHREAD_CREATE_DETACHED(分离线程)
        • PTHREAD_CREATE_JOINABLE(非分离线程)
  • 这里要注意的一点是,如果设置一个线程为分离线程,而这个线程运行又非常快,它很可能在pthread_create函数返回之前就终止了,它终止以后就可能将线程号和系统资源移交给其他的线程使用,这样调用pthread_create的线程就得到了错误的线程号。要避免这种情况可以采取一定的同步措施,最简单的方法之一是可以在被创建的线程里调用pthread_cond_timedwait函数,让这个线程等待一会儿,留出足够的时间让函数pthread_create返回。设置一段等待时间,是在多线程编程里常用的方法。但是注意不要使用诸如wait()之类的函数,它们是使整个进程睡眠,并不能解决同步的问题。

    #include <stdio.h>
    #include <stdlib.h>
    #include <unistd.h>
    #include <pthread.h>
    #include <string.h>
    
    void *thread_func(void *arg)
    {
        pthread_exit((void *)11);
    }
    
    int main()
    {
        pthread_t tid;
        int ret;
        pthread_attr_t attr;
    
        ret = pthread_attr_init(&attr);
        if(ret != 0){
            fprintf(stderr, "pthread_attr_init error:%s\n", strerror(ret));
            exit(1);
        }   
    
        pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
    
        ret = pthread_create(&tid, &attr, thread_func, NULL);
        if(ret != 0){
            fprintf(stderr, "pthread_create error:%s\n", strerror(ret));
            exit(1);
        }   
    
        ret = pthread_join(tid, NULL);
        if(ret != 0){
            fprintf(stderr, "pthread_join error:%s\n", strerror(ret));
            exit(1);
        }   
    
        pthread_exit((void *)1);
        return 0;
    }
    

线程的栈地址

  • POSIX.1 定义了两个常量_POSIX_THREAD_ATTR_STACKADDR和_POSIX_THREAD_ATTR_STACKSIZE
  • 检测系统是否支持栈属性。也可以给sysconf函数传递_SC_THREAD_ATTR_STACKADDR或_SC_THREAD_ATTR_STACKSIZE来进行检测。
  • 当进程栈地址空间不够用时,指定新建线程使用由malloc分配的空间作为自己的栈空间。通过pthread_attr_setstack和pthread_attr_getstack两个函数分别设置和获取线程的栈地址。
  • int pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr, size_t stacksize);
    • 成功:0;失败:错误号
  • int pthread_attr_getstack(const pthread_attr_t *attr, void **stackaddr, size_t *stacksize);
    • 成功:0;失败:错误号
  • 参数
    • attr:指向一个线程属性的指针。
    • stackaddr:返回获取的栈地址。
    • stacksize:返回获取的栈大小。

线程的栈大小

  • 当系统中有很多线程时,可能需要减小每个线程栈的默认大小,防止进程的地址空间不够用,当线程调用的函数会分配很大的局部变量或函数调用层次很深时,可能需要增大线程栈的默认大小。
  • 函数pthread_attr_getstacksize和pthread_attr_setstacksize提供设置。
  • int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);
    • 成功:0;失败:错误号
  • int pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize);
    • 成功:0;失败:错误号
  • 参数
    • attr:指向一个线程属性的指针。
    • stacksize:返回线程的栈大小。

线程属性控制示例

#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>

#define SIZE 0X10000

void *th_fun(void *arg)
{
    while(1)
        sleep(1);
}

int main()
{
    pthread_t tid;
    int err, detachstate, i = 1;
    pthread_attr_t attr;
    size_t stacksize;
    void *stackaddr;

    pthread_attr_init(&attr);
    pthread_attr_getstack(&attr, &stackaddr, &stacksize);
    pthread_attr_getdetachstate(&attr, &detachstate);

    //默认是分离态
    if(detachstate == PTHREAD_CREATE_DETACHED)
        printf("thread detached\n");
    //默认是非分离
    else if (detachstate == PTHREAD_CREATE_JOINABLE)
        printf("thread join\n");
    else
        printf("thread un known\n");

    //设置线程分离属性
    pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

    while(1){
        //在堆上申请内存,指定线程栈的起始地址和大小
        stackaddr = malloc(SIZE);
        if(stackaddr == NULL){
            perror("malloc");
            exit(1);
        }
        stacksize = SIZE;
        //借助线程的属性,修改线程栈空间大小
        pthread_attr_setstack(&attr, stackaddr, stacksize);

        err = pthread_create(&tid, &attr, th_fun, NULL);
        if(err != 0){
            printf("%s\n", strerror(err));
            exit(1);
        }

        printf("%d\n", i++);
    }

    pthread_attr_destroy(&attr);
}

NPTL

  • 1、察看当前pthread库版本getconf GNU_LIBPTHREAD_VERSION
  • 2、NPTL实现机制(POSIX),Native POSIX Thread Library
  • 3、使用线程库时gcc指定-lpthread

线程使用注意事项

  • 1、主线程退出其他线程不退出,主线程退出应调用pthread_exit
  • 2、避免僵尸线程
    • pthread_join
    • pthread_detach
    • pthread_create,指定分离属性
    • 被join线程可能在join函数返回前就释放完自己的所有内存资源,所以不应当返回被回收线程栈中的值。
  • 3、malloc和mmap申请的内存可以被其他线程释放。
  • 4、应避免在多线程模型中调用fork,除非马上exec,子进程中只有调用fork的线程存在,其他线程在子进程中均pthread_exit。
  • 5、信号的复杂语义很难和多线程共存,应避免在多线程引入信号机制。

同步

  • 所谓同步,即同时起步,协调一致。不同的对象,对“同步”的理解方式略有不同。如,设备同步,是指在两个设备之间规定一个共同的时间参考;数据库同步,是指让两个或多个数据库内容保持一致,或者按需要部分保持一致;文件同步,是指让两个或多个文件夹里的文件保持一致。等等
  • 而,编程中、通信中所说的同步与生活中大家印象中的同步概念略有差异。“同”字应是指协同、协助、互相配合。主旨在协同步调,按预定的先后次序运行。

线程同步

  • 同步即协同步调,按预定的先后次序运行。
  • 线程同步,指一个线程发出某一功能调用时,在没有得到结果之前,该调用不返回。同时其它线程为保证数据一致性,不能调用该功能。
  • 举例1:银行存款5000。柜台,折:取3000;提款机,卡:取3000。剩余:2000
  • 举例2:内存中100字节,线程T1欲填入全1,线程T2欲填入全0。但如果T1执行了50个字节失去CPU,T2执行,会将T1写过的内容覆盖。当T1两次获得CPU继续从失去CPU的位置向后写入1,当执行结束,内存中的100字节,既不是全1,也不是全0。
  • 产生的现象叫做“与时间有关的错误”(time related)。为了避免这种数据混乱,线程需要同步。
  • “同步”的目的,是为了避免数据混乱,解决与时间有关的错误。实际上,不仅线程间需要同步,进程间、信号间等等都需要同步机制。
  • 因此,所有“多个控制流,共同操作一个共享资源”的情况,都需要同步。

数据混乱原因

  • 1、资源共享(独享资源则不会)。
  • 2、调度随机(意味着数据访问会出现竞争)。
  • 3、线程间缺乏必要的同步机制。
  • 以上3点中,前两点不能改变,欲提高效率,传递数据,资源必须共享。只要共享资源,就一定会出现竞争。只要存在竞争关系,数据就很容易出现混乱。
  • 所有只能从第三点着手解决。使多个线程在访问共享资源的时候,出现互斥。

互斥mutex

  • Linux中提供一把互斥锁mutex(也称之为互斥量)。
  • 每个线程在对资源操作前都尝试先加锁,成功加锁才能操作,操作结束解锁。
  • 资源还是共享的,线程间也还是竞争的,但通过“锁”就将资源的访问变成互斥操作,而后与时间有关的错误也不会再产生了。 linux服务器开发二(系统编程)--线程相关
  • 但,应注意:同一时刻,只能有一个线程持有该锁。
  • 当A线程对某个全局变量加锁访问,B在访问前尝试加锁,拿不到锁,B阻塞。C线程不去加锁,而直接访问该全局变量,依然能够访问,但会出现数据混乱。
  • 所以,互斥锁实质上是操作系统提供的一把“建议锁”(又称“协同锁”),建议程序中有多线程访问共享资源的时候使用该机制。但并没有强制限定。
  • 因此,即使有了mutex,如果有线程不按规则来访问数据,依然会造成数据混乱。

主要应用函数

  • 基本操作
    • pthread_mutex_init函数
    • pthread_mutex_destroy函数
    • pthread_mutex_lock函数
    • pthread_mutex_trylock函数
    • pthread_mutex_unlock函数
    • 以上5个函数的返回值都是:成功返回0,失败返回错误号。
    • pthread_mutex_t 类型,其本质是一个结构体。为简化理解,应用时可忽略其实现细节,简单当成整数看待。
    • pthread_mutex_t mutex; 变量mutex只有两种取值1、0。
  • pthread_mutex_init函数
    • 初始化一个互斥锁(互斥量) --> 初值可看作1。
    • int pthread_mutex_init(pthread_mutex_t * restrict mutex, const pthread_mutexattr_t * restrict attr);
    • 参1:传出参数,调用时应传&mutex。
    • restrict关键字:只用于限制指针,告诉编译器,所有修改该指针指向内存中内容的操作,只能通过本指针完成。不能通过除本指针以外的其他变量或指针修改。
    • 参2:互斥量属性。是一个传入参数,通常传NULL,选用默认属性(线程间共享)。参APUE.12.4同步属性
      • 静态初始化:如果互斥锁mutex是静态分配的(定义在全局,或加了static关键字修饰),可以直接使用宏进行初始化。e.g.pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
      • 动态初始化:局部变量应采用动态初始化。e.g.pthread_mutex_init(&mutex, NULL);
  • pthread_mutex_destroy函数
    • 销毁一个互斥锁。
    • int pthread_mutex_destroy(pthread_mutex_t *mutex);
  • pthread_mutex_lock函数
    • 加锁。可理解为将mutex--(或1)
    • int pthread_mutex_lock(pthread_mutex_t *mutex);
  • pthread_mutex_unlock函数
    • 解锁。可理解为将mutex++(或+1)
    • int pthread_mutex_unlock(pthread_mutex_t *mutex);
  • pthread_mutex_trylock函数
    • 尝试加锁。
    • int pthread_mutex_trylock(pthread_mutex_t *mutex);

加锁与解锁

  • lock与unlock
    • lock尝试加锁,如果加锁不成功,线程阻塞,阻塞到持有该互斥量的其他线程锁为止。
    • unlock主动解锁函数,同时将阻塞在该锁上的所有线程全部唤醒,至于哪个线程先被唤醒,取决于优先级、调度。默认:先阻塞、先唤醒。
    • 例如:T1、T2、T3、T4使用一把mutex锁。T1加锁成功,其他线程均阻塞,直至T1解锁。T1解锁后,T2、T3、T4均被唤醒,并自动再次尝试加锁。
    • 可假想mutex锁init成功初值为1。lock功能是将mutex--,unlock将mutex++。
  • lock与trylock
    • lock加锁失败会阻塞,等待锁释放。
    • trylock加锁失败直接返回错误号(如:EBUSY),不阻塞。

加锁步骤测试

  • 看如下程序:该程序是非常典型的,由于共享、竞争而没有加任何同步机制,导致产生于时间有关的错误,造成数据混乱。

    #include <stdio.h>
    #include <stdlib.h>
    #include <unistd.h>
    #include <pthread.h>
    #include <string.h>
    
    void *tfn(void *arg)
    {
        srand(time(NULL));
        while(1){
            printf("hello ");
            //模拟长时间操作共享资源,导致CPU易主,产生与时间有关的错误
            sleep(rand() % 3);
            printf("world\n");
            sleep(rand() % 3);
        }
    
        return NULL;
    }
    
    int main(void)
    {
        pthread_t tid;
        srand(time(NULL));
    
        pthread_create(&tid, NULL, tfn, NULL);
        while(1){
            printf("HELLO ");
            sleep(rand() % 3);
            printf("WORLD\n");
            sleep(rand() % 3);
        }
    
        return 0;
    }
    
  • 【练习】:修改该程序,使用mutex互斥锁进行同步。

    • 1、定义全局互斥锁,初始化init(&m, NULL)互斥量,添加对应的destroy。
    • 2、两个线程while中,两次printf前后,分别加lock和unlock。
    • 3、将unlock挪至第二个sleep后,发现交替现象很难出现。
      • 线程在操作完共享资源后本应该立即解锁,但修改后,线程抱着锁睡眠。睡醒解锁后又立即加锁,这两个库函数本身不会阻塞。
      • 所以在这两行代码之间失去CPU的概率很小。因此,另外一个线程很难得到加锁的机会。
    • 4、main中加flag=5将flag在while中--,这时,主线程输出5次后试图销毁锁,但子线程未将锁释放,无法完成。
    • 5、main中加pthread_cancel()将子线程取消。

      #include <stdio.h>
      #include <stdlib.h>
      #include <unistd.h>
      #include <pthread.h>
      #include <string.h>
      
      //定义锁
      pthread_mutex_t mutex;
      
      void *tfn(void *arg)
      {
          srand(time(NULL));
          while(1){
              //加锁
              pthread_mutex_lock(&mutex);
              printf("hello ");
              //模拟长时间操作共享资源,导致CPU易主,产生与时间有关的错误
              sleep(rand() % 3);
              printf("world\n");
              //解锁
              pthread_mutex_unlock(&mutex);
              sleep(rand() % 3);
              //添加检查点
              pthread_testcancel();
          }
      
          return NULL;
      }
      
      int main(void)
      {
          int flag = 5;
          pthread_t tid;
          srand(time(NULL));
      
          //锁初始化
          pthread_mutex_init(&mutex, NULL);  //mutex = 1
      
          pthread_create(&tid, NULL, tfn, NULL);
          while(flag--){
              //加锁
              pthread_mutex_lock(&mutex);
              printf("HELLO ");
              sleep(rand() % 3);
              printf("WORLD\n");
              //解锁
              pthread_mutex_unlock(&mutex);
              sleep(rand() % 3);
          }
          //取消子线程
          pthread_cancel(tid);
          pthread_join(tid, NULL);
          //锁销毁
          pthread_mutex_destroy(&mutex);
          return 0;
      }
      
  • 结论:在访问共享资源前加锁,访问结束后立即解锁。锁的“粒度”应越小越好。

死锁

  • 1、线程试图对同一个互斥量A加锁两次。
  • 2、线程1拥有A锁,请求获得B锁;线程2拥有B锁,请求获得A锁。 linux服务器开发二(系统编程)--线程相关
  • 【作业】:编写程序,实现上述死锁现象。

读写锁

  • 与互斥量类似,但读写锁允许更高的并行性。其特性为:写独占,读共享。

读写锁状态

  • 1、读模式下加锁状态(读锁)。
  • 2、写模式下加锁状态(写锁)。
  • 3、不加锁状态。

读写锁特性

  • 1、读写锁是“写模式加锁”时,解锁前,所有对该锁加锁的线程都会被阻塞。
  • 2、读写锁是“读模式加锁”时,如果线程以读模式对其加锁会成功;如果线程以写模式加锁会阻塞。
  • 3、读写锁是“读模式加锁”时,既有试图以写模式加锁的线程,也有试图以读模式加锁的线程。那么读写锁会阻塞随后的读模式锁请求。优先满足写模式锁。读锁、写锁并行阻塞,写锁优先级高
  • 读写锁也叫共享-独占锁。当读写锁以读模式锁住时,它是以共享模式锁住的;当它以写模式锁住时,它是以独占模式锁住的。写独占、读共享
  • 读写锁非常适合于对数据结构读的次数远大于写的情况。

主要应用函数

  • 基本操作

    • pthread_rwlock_init函数
    • pthread_rwlock_destroy函数
    • pthread_rwlock_rdlock函数
    • pthread_rwlock_wrlock函数
    • pthread_rwlock_tryrdlock函数
    • pthread_rwlock_trywrlock函数
    • pthread_rwlock_unlock函数
    • 以上7个函数的返回值都是:成功返回0,失败直接返回错误号。
    • pthread_rwlock_t类型,用于定义一个读写锁变量。
    • pthread_rwlock_t rwlock;
  • 示例

    #include <stdio.h>
    #include <unistd.h>
    #include <pthread.h>
    
    int counter;
    pthread_rwlock_t rwlock;
    
    void *th_write(void *arg)
    {
        int t;
        int i = (int)arg;
    
        while(1){
            t = counter;
            usleep(1000);
    
            pthread_rwlock_wrlock(&rwlock);
            printf("======write %d: %lu: counter=%d ++counter=%d\n", i, pthread_self(), t, ++counter);
            pthread_rwlock_unlock(&rwlock);
    
            usleep(5000);
        }   
    
        return NULL;
    }
    
    void *th_read(void *arg)
    {
        int i = (int)arg;
        while(1){
            pthread_rwlock_rdlock(&rwlock);
            printf("======read %d: %lu: %d\n", i, pthread_self(), counter);
            pthread_rwlock_unlock(&rwlock);
    
            usleep(900);
        }   
    
        return NULL;
    }
    
    //3个线程不定时写全局资源,5个线程不定时读同一全局资源
    int main()
    {
        int i;
        pthread_t tid[8];
        //初始读写锁
        pthread_rwlock_init(&rwlock, NULL);
    
        for(i = 0; i < 3; i++)
            pthread_create(&tid[i], NULL, th_write, (void *)i);
    
        for(i = 0; i < 5; i++)
            pthread_create(&tid[i+3], NULL, th_read, (void *)i);
    
        for(i = 0; i < 8; i++)
            pthread_join(tid[i], NULL);
    
        //释放读写锁
        pthread_rwlock_destroy(&rwlock);
        return 0;
    }
    

条件变量

  • 条件变量本身不是锁!但它也可以造成阻塞。通常与互斥锁配合使用。给多线程提供一个会合的场所。

主要应用函数

  • 基本操作

    • pthread_cond_init函数
    • pthread_cond_destroy函数
    • pthread_cond_wait函数
    • pthread_cond_timedwait函数
    • pthread_cond_signal函数
    • pthread_cond_broadcast函数
    • 以上6个函数的返回值都是:成功返回0,失败直接返回错误号。
    • pthread_cond_t类型,用于定义条件变量。
    • pthread_cond_t cond;
  • pthread_cond_init函数

    • 初始化一个条件变量
    • int pthread_cond_init(pthread_cond_t * restrict cond, const pthread_condattr_t * restrict attr);
    • 参2:attr表条件变量属性,通常为默认值,传NULL即可。
    • 也可以使用静态初始化的方法,初始化条件变量:pthread_cond_t cond = PTHREAD_COND_INITIALIZED;
  • pthread_cond_destroy函数

    • 销毁一个条件变量
    • int pthread_cond_destroy(pthread_cond_t *cond);
  • pthread_cond_wait函数

    • 阻塞等待一个条件变量
    • int pthread_cond_wait(pthread_cond_t * restrict cond, pthread_mutex_t * restrict mutex);
    • 函数作用:
      • 1、阻塞等待条件变更cond(参1)满足
      • 2、释放已掌握的互斥锁(解锁互斥量)相当于pthread_mutex_unlock(&mutex);
      • 1和2两步为同一个原子操作。
      • 3、当被唤醒,pthread_cond_wait函数返回时,解除阻塞并重新申请获取互斥锁pthread_mutex_lock(&mutex);
  • pthread_cond_timedwait函数

    • 限时等待一个条件变量
    • int pthread_cond_timedwait(pthread_cond_t * restrict cond, pthread_mutex_t * restrict mutex, const struct timespec * restrict abstime);
    • 参3:参看man sem_timedwait函数,查看struct timespec结构体。

      struct timespec{
          time_t tv_sec;  /*seconds*/ 秒
          long tv_nsec;  /*nanoseconds*/ 纳秒
      };
      
    • 形参abstime:绝对时间。

      • 如:time(NULL)返回的就是绝对时间。而alarm(1)是相对时间,相对当前时间定时1秒钟。

        struct timespec t = {1,0};
        pthread_cond_timedwait(&cond, &mutex, &t);
        只能定时到1970年1月1日 00:00:01秒(早已经过去)
        
      • 正确用法:

        • time_t cur = time(NULL); 获取当前时间。
        • struct timespec t; 定义tiemspec结构体变量t
        • t.tv_sec = cur + 1; 定时1秒
        • pthread_cond_timedwait(&cond, &mutex, &t); 传参
      • 在讲解setitimer函数时我们还提到另一种时间类型

        struct timeval{
            time_t tv_sec;  /*seconds*/ 秒
            suseconds_t tv_usec;  /*microseconds*/ 微秒
        };
        
  • pthread_cond_signal函数

    • 唤醒至少一个阻塞在条件变量上的线程。
    • int pthread_cond_signal(pthread_cond_t *cond);
  • pthread_cond_broadcast函数

    • 唤醒全部阻塞在条件变量上的线程。
    • int pthread_cond_broadcast(pthread_cond_t *cond);

生产消费者条件变量模型

  • 线程同步典型的案例即为生产消费者模型,而借助条件变量来实现这一模型,是比较常见的一种方法。假定有两个线程,一个模拟生产者行为,一个模拟消费者行为。两个线程同时操作一个共享资源(一般称之为汇聚),生产向其中添加产品,消费者从中消费掉产品。 linux服务器开发二(系统编程)--线程相关
  • 看如下示例,使用条件变量模拟生产者、消费者问题:

    /*借助条件变量模拟,生产者-消费者问题*/
    #include <stdlib.h>
    #include <stdio.h>
    #include <unistd.h>
    #include <pthread.h>
    
    /*链表作为共享数据,需被互斥量保护*/
    struct msg {
        struct msg *next;
        int num;
    };
    
    struct msg *head;
    struct msg *mp;
    
    /*静态初始化一个条件变量和一个互斥量*/
    pthread_cond_t has_product = PTHREAD_COND_INITIALIZER;
    pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
    
    void *consumer(void *p)
    {
        for(;;){
            pthread_mutex_lock(&lock);
            while(head == NULL){ //头指针为空,说明没有节点
                pthread_cond_wait(&has_product, &lock);
            }
            mp = head;
            head = mp->next; //模拟消费掉一个产品
            pthread_mutex_unlock(&lock);
    
            printf("-Consume ---%d\n", mp->num);
            free(mp);
            sleep(rand() % 5);
        }
    }
    
    void *producer(void *p)
    {
        for(;;){
            mp = malloc(sizeof(struct msg));
            //模拟生产一个产品
            mp->num = rand() % 1000 + 1;
            printf("-Produce ---%d\n", mp->num);
    
            pthread_mutex_lock(&lock);
            mp->next = head;
            head = mp;
            pthread_mutex_unlock(&lock);
            //将等待在该条件变量上的一个线程唤醒
            pthread_cond_signal(&has_product);
            sleep(rand() % 5);
        }
    }
    
    int main(int argc, char * argv)
    {
        pthread_t pid, cid;
        srand(time(NULL));
    
        pthread_create(&pid, NULL, producer, NULL);
        pthread_create(&cid, NULL, consumer, NULL);
    
        pthread_join(pid, NULL);
        pthread_join(cid, NULL);
    
        return 0;
    }
    

条件变量的优点:

  • 相较于mutex而言,条件变量可以减少竞争。
  • 如直接使用mutex,除了生产者、消费者之间要竞争互斥量以外,消费者之间也要竞争互斥量,但如果汇聚(链表)中没有数据,消费者之间竞争互斥锁是无意义的。有了条件变量机制以后,只有生产者完成生产,才会引起消费者之间竞争。提高了程序效率。

信号量

  • 进化版的互斥锁(1-->N)。
  • 由于互斥锁的粒度比较大,如果我们希望在多个线程间对某一对象的部分数据进行共享,使用互斥锁是没有办法实现的,只能将整个数据对象锁住。这样虽然达到了多线程操作共享数据时保证正确性的目的,却无形中导致线程的并发性下降。线程从并行执行,变成了串行执行。与直接使用单进程无异。
  • 信号量,是相对折中的一种处理方式,既能保证同步,数据不混乱,又能提高线程并发。

主要应用函数

  • 函数列表
    • sem_init函数
    • sem_destroy函数
    • sem_wait函数
    • sem_post函数
    • sem_trywait函数
    • sem_timedwait函数
    • 以上6个函数的返回值都是:成功返回0,失败返回-1,同时设置errno。(注意,它们没有pthread前缀)。
    • sem_t类型,本质仍是结构体。但应用期间可简单看作为整数,忽略实现细节(类似于使用文件描述符)。
    • sem_t sem; 规定信号量sem不能<0。头文件<semaphore.h>
  • 信号量基本操作:
    • sem_wait:
      • 1、信号量大于0,则信号量--。(类比pthread_mutex_lock)
      • 2、信号量等于0,造成线程阻塞
    • sem_post:
      • 将信号量++,同时唤醒阻塞在信号量上的线程。(类比pthread_mutex_unlock)
    • 但,由于sem_t的实现对用户隐藏,所有所谓的++、--操作只能通过函数来实现,而不能直接++、--符号。
    • 信号量的初值,决定了占用信号量的线程的个数
  • sem_init函数
    • 初始化一个信号量。
    • int sem_init(sem_t *sem, int pshared, unsigned int value);
    • 参1:sem信号量。
    • 参2:pshared取0用于线程间;取非0(一般为1)用于进程间。
    • 参3:value指定信号量初值。
  • sem_destroy函数
    • 销毁一个信号量。
    • int sem_destroy(sem_t *sem);
  • sem_wait函数
    • 给信号量加锁 --
    • int sem_wait(sem_t *sem);
  • sem_post函数
    • 给信号量解锁 ++
    • int sem_post(sem_t *sem);
  • sem_trywait函数
    • 尝试对信号量加锁 --。(与sem_wait的区别类比lock和trylock)
    • int sem_trywait(sem_t *sem);
  • sem_timedwait函数
    • 限时尝试对信号量加锁--
    • int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);
    • 参2:abs_timeout采用的是绝对时间。

生产者消费者信号量模型

  • 【练习】:使用信号量完成线程间同步,模拟生产者,消费者问题。

    /*信号量实现生产者消费者问题*/
    #include <stdio.h>
    #include <unistd.h>
    #include <pthread.h>
    #include <stdlib.h>
    #include <semaphore.h>
    
    #define NUM 5
    
    int queue[NUM]; //全局数组实现环形队列
    sem_t blank_number, product_number; //空格子信号量,产品信号量
    
    void *producer(void *arg)
    {
        int i = 0;
        while(1) {
            sem_wait(&blank_number); //生产者将空格子数--,为0则阻塞等待
            queue[i] = rand() % 1000 + 1; //生产一个产品
            printf("----Produce----%d\n", queue[i]);
            sem_post(&product_number); //将产品数++
    
            i = (i+1) % NUM; //借助下标实现环形
            sleep(rand() % 3);
        }
        return NULL;
    }
    
    void *consumer(void *arg)
    {
        int i = 0;
        while(1){
            sem_wait(&product_number); //消费者将产品数--,为0则阻塞等待
            printf("--Consume---%d\n", queue[i]);
            queue[i] = 0; //消费一个产品
            sem_post(&blank_number); //消费掉以后,将空格子数++
    
            i = (i+1) % NUM; //借助下标实现环形
            sleep(rand() % 3);
        }
        return NULL;
    }
    
    int main()
    {
        pthread_t pid, cid;
    
        sem_init(&blank_number, 0, NUM); //初始化空格子信号量为5
        sem_init(&product_number, 0, 0); //产品数为0
    
        pthread_create(&pid, NULL, producer, NULL);
        pthread_create(&cid, NULL, consumer, NULL);
    
        pthread_join(pid, NULL);
        pthread_join(cid, NULL);
    
        sem_destroy(&blank_number);
        sem_destroy(&product_number);
        return 0;
    }
    
  • 分析

    • 规定
      • 如果队列中有数据,生产者不能生产,只能阻塞。
      • 如果队列中没有数据,消费者不能消费,只能等待数据。
    • 定义两个信号量:S满 = 0, S空 = 1(S满代表满格的信号量,S空表示空格的信号量,程序起始,格子一定为空)。
    • 所以有:

      T生产者主函数 {
          sem_wait(S空);
          生产...
          sem_post(S满)
      }
      
      T消费者主函数 {
          sem_wait(S满);
          消费...
          sem_post(S空)
      }
      
    • 假设:线程到达的顺序是:T生、T生、T消。
    • 那么:
      • T生1到达,将S空-1,生产,将S满+1
      • T生2到达,S空已经为0,阻塞
      • T消到达,将S满-1,消费,将S空+1
    • 三个线程到达的顺序是:T生1、T生2、T消。而执行的顺序是T生1、T消、T生2
    • 这里,【S空】表示空格子的总数,代表可占用信号量的线程总数-->1。其实这样的话,信号量就等同于互斥锁。
    • 但,如果S空=2、3、4……就不一样了,该信号量同时可以由多个线程占用,不再是互斥的形状。因此我们说信号量是互斥锁的加强版。
    • 【推演练习】:理解上述模型,推演,如果是两个消费者,一个生产者,是怎么样的情况。
    • 【作业】:结合生产者消费者信号量模型,揣摩sem_timedwait函数作用。编程实现,一个线程读用户输入,另一个线程打印“hello world”。如果用户无输入,则每隔5秒向屏幕打印一个“hello world”;如果用户有输入,立刻打印“hello world”到屏幕。

进程间同步

  • 进程间也可以使用互斥锁,来达到同步的目的。但应在pthread_mutex_init初始化之前,修改其属性为进程间共享。mutex的属性修改函数主要有以下几个。

互斥量mutex

  • 主要应用函数
    • pthread_mutexattr_t mattr类型:用于定义mutex锁的【属性】。
    • pthread_mutexattr_init函数:初始化一个mutex属性对象。
      • int pthread_mutexattr_init(pthread_mutexattr_t *attr);
    • pthread_mutexattr_destroy函数:销毁mutex属性对象(而非销毁锁)。
      • int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);
    • pthread_mutexattr_setpshared函数:修改mutex属性。
      • int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared);
      • 参2:pshared取值
        • 线程锁:PTHREAD_PROCESS_PRIVATE(mutex的默认属性即为线程锁,进程间私有)
        • 进程锁:PTHREAD_PROCESS_SHARED
  • 进程间mutex示例

    #include <stdio.h>
    #include <stdlib.h>
    #include <unistd.h>
    #include <string.h>
    #include <fcntl.h>
    #include <pthread.h>
    #include <sys/mman.h>
    #include <sys/wait.h>
    
    struct mt {
        int num;
        pthread_mutex_t mutex;
        pthread_mutexattr_t mutexattr;
    };
    
    int main()
    {
        int i;
        struct mt *mm;
        pid_t pid;
    
        mm = mmap(NULL, sizeof(*mm), PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANON, -1, 0);
        memset(mm, 0, sizeof(*mm));
    
        pthread_mutexattr_init(&mm->mutexattr); //初始化mutex属性对象
        pthread_mutexattr_setpshared(&mm->mutexattr, PTHREAD_PROCESS_SHARED); //修改属性为进程间共享
    
        pthread_mutex_init(&mm->mutex, &mm->mutexattr); //初始化一把mutex锁
    
        pid = fork();
        if(pid == 0){
            for(i = 0; i < 10; i++){
                pthread_mutex_lock(&mm->mutex);
                (mm->num)++;
                printf("-Child------------num++   %d\n", mm->num);
                pthread_mutex_unlock(&mm->mutex);
                sleep(1);
            }
        } else if(pid > 0){
            for(i = 0; i < 10; i++){
                sleep(1);
                pthread_mutex_lock(&mm->mutex);
                mm->num+=2;
                printf("-------parent-----num+=2  %d\n", mm->num);
                pthread_mutex_unlock(&mm->mutex);
            }
            wait(NULL);
        }
    
        pthread_mutexattr_destroy(&mm->mutexattr); //销毁mutex属性对象
        pthread_mutex_destroy(&mm->mutex); //销毁mutex
        munmap(mm,sizeof(*mm)); //释放映射区
        return 0;
    }
    

文件锁

  • 借助fcntl函数来实现锁机制。操作文件的进程没有获得锁时,可以打开,但无法执行read、write操作。
  • fcntl函数:获取、设置文件访问控制属性。
  • int fcntl(int fd, int cmd, ... /* arg */ );

    • 参2:
      • F_SETLK(struct flock *),设置文件锁(trylock)。
      • F_SETLKW(struct flock *),设置文件锁(lock)W --> wait
      • F_GETLK(struct flock *),获取文件锁
    • 参3:

      struct flock {
         ...
         short l_type;    /* 锁的类型: F_RDLCK, F_WRLCK, F_UNLCK */
         short l_whence;  /* 偏移位置: SEEK_SET, SEEK_CUR, SEEK_END */
         off_t l_start;   /* 起始偏移:1000*/
         off_t l_len;     /* 长度:0表示整个文件加锁 */
         pid_t l_pid;     /* 持有该锁的进程ID:F_GETLK, F_OFD_GETLK */
         ...
      };
      
  • 进程间文件锁示例

    #include <stdio.h>
    #include <sys/types.h>
    #include <sys/stat.h>
    #include <fcntl.h>
    #include <unistd.h>
    #include <stdlib.h>
    
    void sys_err(char *str){
        perror(str);
        exit(1);
    }
    
    int main(int argc, char *argv[])
    {
        int fd;
        struct flock f_lock;
    
        if(argc < 2){
            printf("./a.out filename\n");
            exit(1);
        }
    
        if((fd = open(argv[1], O_RDWR)) < 0)
            sys_err("open");
    
        f_lock.l_type = F_WRLCK; //选用写锁
        //f_lock.l_type = F_RDLCK; //选用读锁
    
        f_lock.l_whence = SEEK_SET;
        f_lock.l_start = 0;
        f_lock.l_len = 0; //0表示整个文件加锁
    
        fcntl(fd, F_SETLKW, &f_lock);
        printf("get flock\n");
    
        sleep(10);
    
        f_lock.l_type = F_UNLCK;
        fcntl(fd, F_SETLKW, &f_lock);
        printf("un flock\n");
    
        close(fd);
        return 0;
    }
    
    • 依然遵循”读共享、写独占“特性。但!如若进程不加锁直接操作文件,依然可访问成功,但数据势必出现混乱。
    • 【思考】:多线程中,可以使用文件锁吗?
      • 多线程间共享文件夹描述符,而给文件加锁,是通过修改文件描述符所指向的文件结构体中的成员变量来实现的。因此,多线程中无法使用文件锁

哲学家用餐模型分析

linux服务器开发二(系统编程)--线程相关

多线程版

  • 选用互斥锁mutex,如创建5个,pthread_mutex_t m[5];
  • 模型抽象:

    • 5个哲学家 --> 5个线程; 5支筷子 --> 5把互斥锁; int left(左手), right(右手)。
    • 5个哲学家使用相同的逻辑,可通用一个线程主函数,void *tfn(void *arg),使用参数来表示线程编号:int i = (int)arg;
    • 哲学家线程根据编号知道自己第几个哲学家,而后选定锁,锁住,吃饭。否则哲学家thinking。
    • 5支筷子,在逻辑上形成环,分别对应5个哲学家。

          A       B       C       D       E
      0       1       2       3       4
      

      linux服务器开发二(系统编程)--线程相关

    • 所以有:

      if(i == 4)
          left = i, right = 0;
      else
          left = i, right = i + 1;
      
    • 振荡:如果每个人都攥着自己左手的锁,尝试去拿右手锁,拿不到则将锁释放。过会儿五个人又同时再攥着左手锁尝试拿右手锁,依然拿不到。如此往复形成另外一种极端死锁的现象--振荡。

    • 避免振荡现象:只需5个人中,任意一个人,拿锁的方向与其他人相逆即可(如:E,原来:左:4,右:0;现在:左:0,右:4)。
    • 所以以上if else语句应改为

      if(i == 4)
          left = 0, right = i;
      else
          left = i, right = i + 1;
      
    • 而后,首先让哲学家尝试加左手锁:

      while(1){
          pthread_mutex_lock(&m[left]); 如果加锁成功,函数返回再加右手锁,如果失败,应立即释放左手锁,等待。
          若左右手都加锁成功 --> 吃 --> 吃完 --> 释放锁(应先释放右手、再释放左手,是加锁顺序的逆序)
      }
      
    • 主线程(main)中,初始化5把锁,销毁5把锁,创建5个线程(并将i传递给线程主函数),回收5个线程。

    • 避免死锁的方法
      • 1、当得不到所有所需资源时,放弃已经获得的资源,等待。
      • 2、保证资源的获取顺序,要求每个线程获取资源的顺序一致。如:A获取顺序1、2、3;B顺序应也是1、2、3。若B为3、2、1则易出现死锁现象。

多进程版

  • 相较于多线程需注意问题:
    • 需注意如何共享信号量(注意:坚决不能使用全局变量sem_t s[5])
  • 实现:

    • main函数中:
      • 循环sem_init(&s[i], 0, 1); 将信号量初始值设为1,信号量变为互斥锁。
      • 循环sem_destroy(&s[i]);
      • 循环创建5个进程。if(i<5)中完成子进程的代码逻辑。
      • 循环回收5个子进程。
    • 子进程中:

      if(i == 4)
          left = 0, right = 4;
      else
          left = i, right = i + 1;
      
      while(1){
          使用sem_wait(&s[left])锁左手,尝试锁右手,若成功 --> 吃;若不成功 --> 将左手锁释放。
          吃完后,先释放右手锁,再释放左手锁。
      }
      
    • 【重点注意】

      • 直接将sem_t s[5]放在全局位置,试图用于子进程间共享是错误的!应将其定义放置与mmap共享映射区中。
      • main中:
        • sem_t s = mmap(NULL, sizeof(sem_t)5, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANON, -1, 0);
        • 使用方式:将s当成数组首地址看待,与使用数组s[5]没有差异。
上一篇:2016 MIPT Pre-Finals Workshop * NTU Contest


下一篇:转: 最值得阅读学习的 10 个 C 语言开源项目代码