数学符号表[编辑]
*,*的百科全书 跳到导航跳到搜索 这是一个未完成列表。欢迎您扩充内容。本页面包含特殊字符,部分操作系统及浏览器需要特殊字母与符号支持才能正确显示,否则可能出现乱码、问号、空格等其它符号。 |
数学中,有一组常在数学表达式中出现的符号。数学工作者一般熟悉这些符号,所以使用时不一定会加以说明。但绝大多数常见的符号都有相应标准[1]或Unicode符号说明[2]等加以规范。下表列出了很多常见的数学符号,并附有名称、读法和应用领域。第三栏给出一个非正式的定义,第四栏提供简单的例子。
注意,有时候不同的数学符号有相同含义,而有些数学符号在不同的语境中会有不同的含义。
数学符号表[编辑]
符号 | 名称 | 定义 | 举例 | ||
---|---|---|---|---|---|
读法 | |||||
数学领域 | |||||
= | 等号 | {\displaystyle x=y}表示{\displaystyle x}和{\displaystyle y}是相同的东西或其值相等。 | {\displaystyle 1+1=2} | ||
等于 | |||||
所有领域 | |||||
≠ | 不等号 | {\displaystyle x\neq y}表示{\displaystyle x}和{\displaystyle y}不是相同的东西或其值不相等。 | {\displaystyle 1\neq 2} | ||
不等于 | |||||
所有领域 | |||||
< > |
严格不等号 | {\displaystyle x<y}表示{\displaystyle x}小于{\displaystyle y}。 {\displaystyle x>y}表示{\displaystyle x}大于{\displaystyle y}。 |
{\displaystyle 3<4} {\displaystyle 5>4} |
||
小于,大于 | |||||
序理论 | |||||
≤ ≥ |
不等号 | {\displaystyle x\leq y}表示{\displaystyle x}小于或等于{\displaystyle y}。 {\displaystyle x\geq y}表示{\displaystyle x}大于或等于{\displaystyle y}。 |
{\displaystyle 3\leq 4};{\displaystyle 5\leq 5} {\displaystyle 5\geq 4};{\displaystyle 5\geq 5} |
||
小于等于,大于等于 | |||||
序理论 | |||||
+ | 加号 | {\displaystyle 3+3}表示 3 加 3。 | {\displaystyle 3+3=6} | ||
加 | |||||
算术 | |||||
− | 减号 | {\displaystyle 6-3}表示 6 减 3 或 6 被 3 减。 | {\displaystyle 6-3=3} | ||
减 | |||||
算术 | |||||
负号 | −5 表示 5 的负数。 | {\displaystyle -(-5)=5} | |||
负 | |||||
算术 | |||||
补集 | {\displaystyle A-B}表示包含所有属于{\displaystyle A}但不属于{\displaystyle B}的元素的集合。 | {\displaystyle \left\{1,2,4\right\}-\left\{1,3,4\right\}=\left\{2\right\}} | |||
减 | |||||
集合论 | |||||
× | 乘号 | {\displaystyle 2\times 3}表示 2 乘以 3。 | {\displaystyle 2\times 3=6} | ||
乘以 | |||||
算术 | |||||
直积 | {\displaystyle X\times Y}表示所有第一个元素属于{\displaystyle X},第二个元素属于{\displaystyle Y}的有序对的集合。 | {\displaystyle \left\{1,2\right\}\times \left\{3,4\right\}=\left\{(1,3),(1,4),(2,3),(2,4)\right\}} | |||
… 和…的直积 | |||||
集合论 | |||||
向量积 | {\displaystyle {\boldsymbol {u}}\times {\boldsymbol {v}}}表示向量{\displaystyle {\boldsymbol {u}}}和{\displaystyle {\boldsymbol {v}}}的向量积。 | {\displaystyle (1,2,5)\times (3,4,-1)=(-22,16,-2)} | |||
向量积 | |||||
向量代数 | |||||
÷ / |
除号 | {\displaystyle 6\div 3}或{\displaystyle 6/3}表示 6 除以 3 或 3 除 6 或 6 被 3 除。 | {\displaystyle 6\div 3=2} {\displaystyle 12/4=3} |
||
除以 | |||||
算术 | |||||
{\displaystyle {\sqrt {}}} {\displaystyle {\sqrt {\ }}} |
根号 | {\displaystyle {\sqrt {x}}}表示其平方为{\displaystyle x}的正数。 | {\displaystyle {\sqrt {4}}=+2} | ||
…的平方根 | |||||
实数 | |||||
复根号 | 若用极坐标表示复数{\displaystyle z=r\exp(i\varphi )}(满足{\displaystyle -\pi <\varphi <\pi }),则{\displaystyle {\sqrt {z}}={\sqrt {r}}\exp({\frac {i\varphi }{2}})}。 | {\displaystyle {\sqrt {-1}}=i} | |||
…的平方根 | |||||
复数 | |||||
| | | 绝对值 | {\displaystyle \left\vert x\right\vert }表示实轴(或复平面)上 x 和 0 的距离。 | {\displaystyle \left\vert 3\right\vert =3}, {\displaystyle \left\vert -5\right\vert =5}, {\displaystyle \left\vert i\right\vert =1}, {\displaystyle \left\vert 3+4i\right\vert =5} | ||
…的绝对值 | |||||
数 | |||||
! | 阶乘 | {\displaystyle n!}表示连乘积{\displaystyle 1\times 2\times \ldots \times n}。 | {\displaystyle 4!=1\times 2\times 3\times 4=24} | ||
…的阶乘 | |||||
组合论 | |||||
~ | 概率分布 | {\displaystyle X\sim D}表示随机变量{\displaystyle X}概率分布为{\displaystyle D}。 | {\displaystyle X\sim N(0,1)}:标准正态分布 | ||
满足分布 | |||||
统计学 | |||||
⇒ → ⊃ |
实质蕴涵 | {\displaystyle A\Rightarrow B}表示{\displaystyle A}真则{\displaystyle B}也真;{\displaystyle A}假则{\displaystyle B}不定。 {\displaystyle \rightarrow }可能和{\displaystyle \Rightarrow }一样,或者有下面将提到的函数的意思。 {\displaystyle \supset }可能和{\displaystyle \Rightarrow }一样,或者有下面将提到的父集的意思。 |
{\displaystyle x=2\Rightarrow x^{2}=4}为真,但{\displaystyle x^{2}=4\Rightarrow x=2}一般情况下为假(因为{\displaystyle x}可以是{\displaystyle -2})。 | ||
推出,若…则 … | |||||
命题逻辑 | |||||
⇔ ↔ |
实质等价 | {\displaystyle A\Leftrightarrow B}表示{\displaystyle A}真则{\displaystyle B}真,{\displaystyle A}假则{\displaystyle B}假。 | {\displaystyle x+5=y+2\Leftrightarrow x+3=y} | ||
当且仅当(当且仅当) | |||||
命题逻辑 | |||||
¬ ˜ |
逻辑非 | 命题{\displaystyle \neg A}为真当且仅当{\displaystyle A}为假。 将一条斜线穿过一个符号相当于将 "{\displaystyle \neg }" 放在该符号前面。 |
{\displaystyle \neg (\neg A)\Leftrightarrow A} {\displaystyle x\neq y\Leftrightarrow \neg (x=y)} |
||
非,不 | |||||
命题逻辑 | |||||
∧ | 逻辑与或交运算 | 若{\displaystyle A}为真且{\displaystyle B}为真,则命题{\displaystyle A\land B}为真;否则为假。 | {\displaystyle n<4\land n>2\Leftrightarrow n=3},当{\displaystyle n}是自然数 | ||
与 | |||||
命题逻辑,格理论 | |||||
∨ | 逻辑或或并运算 | 若{\displaystyle A}或{\displaystyle B}(或都)为真,则命题{\displaystyle A\lor B}为真;若两者都假则命题为假。 | {\displaystyle n\geq 4\lor n\leq 2\Leftrightarrow n\neq 3},当{\displaystyle n}是自然数 | ||
或 | |||||
命题逻辑,格理论 | |||||
⊕ ⊻ |
异或 | 若{\displaystyle A}和{\displaystyle B}刚好有一个为真,则命题{\displaystyle A\oplus B}为真。 {\displaystyle A\veebar B}的意义相同。 |
{\displaystyle (\neg A)\oplus A}恒为真,{\displaystyle A\oplus A}恒为假。 | ||
异或 | |||||
命题逻辑,布尔代数 | |||||
∀ | 全称量词 | {\displaystyle \forall x:P(x)}表示{\displaystyle P(x)}对于所有{\displaystyle x}为真。 | {\displaystyle \forall n\in \mathbb {N} :n^{2}\geq n} | ||
对所有;对任意;对任一 | |||||
谓词逻辑 | |||||
∃ | 存在量词 | {\displaystyle \exists x:P(x)}表示存在至少一个{\displaystyle x}使得{\displaystyle P(x)}为真。 | {\displaystyle \exists n\in \mathbb {N} :n}为偶数 | ||
存在 | |||||
谓词逻辑 | |||||
∃! | 唯一量词 | {\displaystyle \exists !x:P(x)}表示有且仅有一个 x 使得 P(x) 为真。 | {\displaystyle \exists !n\in \mathbb {N} :n+5=2n} | ||
存在唯一 | |||||
谓词逻辑 | |||||
:= ≡ :⇔ |
定义 | {\displaystyle x:=y}或{\displaystyle x\equiv y}表示{\displaystyle x}定义为{\displaystyle y}的一个名字(注意:{\displaystyle \equiv }也可表示其它意思,例如恒等于)。 {\displaystyle P:\Leftrightarrow Q}表示{\displaystyle P}定义为{\displaystyle Q}的逻辑等价。 |
{\displaystyle \cosh x:={\frac {1}{2}}\left(\exp x+\exp(-x)\right)} {\displaystyle A\;{\text{XOR}}\;B:\Leftrightarrow (A\lor B)\land \neg (A\land B)} |
||
定义为 | |||||
所有领域 | |||||
{ , } | 集合括号 | {\displaystyle \left\{a,b,c\right\}}表示{\displaystyle a,b,c}组成的集合。 | {\displaystyle \mathbb {N} =\left\{0,1,2,\ldots \right\}} | ||
…的集合 | |||||
集合论 | |||||
{ : } { | } |
集合构造记号 | {\displaystyle \left\{x:P(x)\right\}}表示所有满足{\displaystyle P(x)}的{\displaystyle x}的集合。 {\displaystyle \left\{x|P(x)\right\}}和{\displaystyle \left\{x:P(x)\right\}}的意义相同。 |
{\displaystyle \left\{n\in \mathbb {N} :n^{2}<20\right\}=\left\{0,1,2,3,4\right\}} | ||
满足…的集合 | |||||
集合论 | |||||
∅ {} |
空集合 | {\displaystyle \varnothing }表示没有元素的集合。 {\displaystyle \left\{\right\}}的意义相同。 |
{\displaystyle \left\{n\in \mathbb {N} :1<n^{2}<4\right\}=\varnothing } | ||
空集合 | |||||
集合论 | |||||
∈ ∉ |
元素归属性质 | {\displaystyle a\in S}表示{\displaystyle a}属于集合{\displaystyle S} {\displaystyle a\not \in S}表示{\displaystyle a}不属于{\displaystyle S}。 |
{\displaystyle \left({\frac {1}{2}}\right)^{-1}\in \mathbb {N} } {\displaystyle 2^{-1}\not \in \mathbb {N} } |
||
属于;不属于 | |||||
所有领域 | |||||
⊆ ⊂ ⫋ |
子集 | {\displaystyle A\subseteq B}表示{\displaystyle A}的所有元素属于{\displaystyle B}。 {\displaystyle A\subset B}表示{\displaystyle A\subseteq B}但{\displaystyle A\neq B}。 (有的地方记作{\displaystyle A\subsetneqq B}) |
{\displaystyle A\cap B\subseteq A}
|
||
…的子集 | |||||
集合论 | |||||
⊇ ⊃
|
父集 | {\displaystyle A\supseteq B}表示{\displaystyle B}的所有元素属于{\displaystyle A}。 {\displaystyle A\supset B}表示{\displaystyle A\supseteq B}但{\displaystyle A\neq B}。
|
{\displaystyle A\cup B\supseteq B}
|
||
…的父集 | |||||
集合论 | |||||
∪ | 并集(并集) | {\displaystyle A\cup B}表示包含所有{\displaystyle A}和{\displaystyle B}的元素但不包含任何其他元素的集合。 | {\displaystyle A\subseteq B\Leftrightarrow A\cup B=B} | ||
…和…的并集 | |||||
集合论 | |||||
∩ | 交集 | {\displaystyle A\cap B}表示包含所有同时属于{\displaystyle A}和{\displaystyle B}的元素的集合。 | {\displaystyle \left\{x\in \mathbb {R} :x^{2}=1\right\}\cap \mathbb {N} =\left\{1\right\}} | ||
…和…的交集 | |||||
集合论 | |||||
\
|
补集 | {\displaystyle A\setminus B}表示所有属于{\displaystyle A}但不属于{\displaystyle B}的元素的集合。
(有的地方记作{\displaystyle \complement _{A}B}) |
{\displaystyle \left\{1,2,3,4\right\}\setminus \left\{3,4,5,6\right\}=\left\{1,2\right\}}
|
||
减;除去 | |||||
集合论 | |||||
( ) | 函数应用 | {\displaystyle f(x)}表示{\displaystyle f}在{\displaystyle x}的值。 | {\displaystyle f(x):=x^{2}},则{\displaystyle f(3)=3^{2}=9}。 | ||
{\displaystyle f(x)} | |||||
集合论 | |||||
优先组合 | 先执行括号内的运算。 | {\displaystyle \left({\frac {8}{4}}\right)\div 2={\frac {2}{2}}=1} {\displaystyle 8\div \left({\frac {4}{2}}\right)={\frac {8}{2}}=4} |
|||
所有领域 | |||||
ƒ :X →Y |
函数箭头 | {\displaystyle f:X\rightarrow Y}表示{\displaystyle f}从集合{\displaystyle X}映射到集合{\displaystyle Y}。 | 设{\displaystyle f:\mathbb {Z} \rightarrow \mathbb {N} }定义为{\displaystyle f(x)=x^{2}}。 | ||
从…到… | |||||
集合论 | |||||
o | 复合函数 | {\displaystyle f\circ g}是一个函数,使得{\displaystyle (f\circ g)(x)=f(g(x))}。 | 若{\displaystyle f(x)=2x}且{\displaystyle g(x)=x+3},则 {\displaystyle (f\circ g)(x)=2(x+3)}。 | ||
复合 | |||||
集合论 | |||||
N ℕ |
自然数 | {\displaystyle \mathbb {N} }表示{\displaystyle \left\{1,2,3,\ldots \right\}},另一定义参见自然数条目。 | {\displaystyle \left\{\left\vert a\right\vert :a\in \mathbb {Z} \right\}=\mathbb {N} } | ||
N | |||||
数 | |||||
Z ℤ |
整数 | {\displaystyle \mathbb {Z} }表示{\displaystyle \left\{\ldots ,-3,-2,-1,0,1,2,3,\ldots \right\}}。 | {\displaystyle \left\{a:\left\vert a\right\vert \in \mathbb {N} \right\}=\mathbb {Z} } | ||
Z | |||||
数 | |||||
Q ℚ |
有理数 | {\displaystyle \mathbb {Q} }表示{\displaystyle \left\{p|q:p,q\in \mathbb {Z} ,q\neq 0\right\}}。 | {\displaystyle 3.14\in \mathbb {Q} } {\displaystyle \pi \not \in \mathbb {Q} } |
||
Q | |||||
数 | |||||
R ℝ |
实数 | {\displaystyle \mathbb {R} }表示{\displaystyle \{\textstyle \lim _{n\to \infty }\displaystyle a_{n}:\forall n\in \mathbb {N} :a_{n}\in \mathbb {Q} ,}极限存在{\displaystyle \}}。 | {\displaystyle \pi \in \mathbb {R} } {\displaystyle {\sqrt {-1}}\not \in \mathbb {R} } |
||
R | |||||
数 | |||||
C ℂ |
复数 | {\displaystyle \mathbb {C} }表示{\displaystyle \left\{a+bi:a,b\in \mathbb {R} \right\}}。 | {\displaystyle i={\sqrt {-1}}\in \mathbb {C} } | ||
C | |||||
数 | |||||
∞ | 无穷 | {\displaystyle \infty }是扩展的实轴上大于任何实数的数;通常出现在极限中。 | {\displaystyle \textstyle \lim _{x\to 0}\displaystyle {\frac {1}{\left\vert x\right\vert }}=\infty } | ||
无穷 | |||||
数 | |||||
π | 圆周率 | {\displaystyle \pi }表示圆周长和直径之比。 | {\displaystyle A=\pi r^{2}}是半径为{\displaystyle r}的圆的面积 | ||
pi | |||||
几何 | |||||
|| || | 范数 | {\displaystyle \left\Vert x\right\Vert }是赋范线性空间元素{\displaystyle x}的范数。 | {\displaystyle \left\Vert x+y\right\Vert \leq \left\Vert x\right\Vert +\left\Vert y\right\Vert } | ||
…的范数;…的长度 | |||||
线性代数 | |||||
∑ | 求和 | {\displaystyle \sum _{k=1}^{n}a_{k}}表示{\displaystyle a_{1}+a_{2}+\ldots +a_{n}}. | {\displaystyle {\begin{aligned}\sum _{k=1}^{4}k^{2}&=1^{2}+2^{2}+3^{2}+4^{2}\\&=1+4+9+16\\&=30\end{aligned}}} | ||
从…到…的和 | |||||
算术 | |||||
∏ | 求积 | {\displaystyle \prod _{k=1}^{n}a_{k}}表示{\displaystyle a_{1}a_{2}\ldots a_{n}}. | {\displaystyle {\begin{aligned}\prod _{k=1}^{4}(k+2)&=(1+2)(2+2)(3+2)(4+2)\\&=3\times 4\times 5\times 6\\&=360\end{aligned}}} | ||
从…到…的积 | |||||
算术 | |||||
直积 | {\displaystyle \prod _{i=0}^{n}Y_{i}}表示所有 (n+1)-元组 ({\displaystyle y_{0},\ldots ,y_{n}})。 | {\displaystyle \prod _{n=1}^{3}\mathbb {R} =\mathbb {R} ^{n}} | |||
…的直积 | |||||
集合论 | |||||
' | 导数 | {\displaystyle f'(x)}函数{\displaystyle f}在{\displaystyle x}点的导数,也就是,那里的切线斜率。 | 若{\displaystyle f(x)=x^{2}}, 则{\displaystyle f'(x)=2x} | ||
… 撇; …的导数 | |||||
微积分 | |||||
∫ | 不定积分 或 反导数 | {\displaystyle \int f(x)dx}表示导数为{\displaystyle f}的函数. | {\displaystyle \int x^{2}dx={\frac {x^{3}}{3}}+C} | ||
…的不定积分; …的反导数 | |||||
微积分 | |||||
定积分 | {\displaystyle \int _{a}^{b}f(x)dx}表示x-轴和{\displaystyle f}在{\displaystyle x=a}和{\displaystyle x=b}之间的函数图像所夹成的带符号面积。 | {\displaystyle \int _{0}^{b}x^{2}dx={\frac {b^{3}}{3}}} | |||
从…到…以…为变量的积分 | |||||
微积分 | |||||
∇ | 梯度 | {\displaystyle \triangledown f(x_{1},\ldots ,x_{n})}偏导数组成的向量{\displaystyle (df/dx_{1},\ldots ,df/dx_{n})} | 若{\displaystyle f(x,y,z)=3xy+z^{2}}则{\displaystyle \triangledown f=(3y,3x,2z)} | ||
…的(del或nabla或梯度) | |||||
微积分 | |||||
∂ | 偏导数 | 设有{\displaystyle f(x_{1},\ldots ,x_{n}),\partial f/\partial x}是{\displaystyle f}的对于{\displaystyle x_{i}}的当其他变量保持不变时的导数. | 若{\displaystyle f(x,y)=x^{2}y}, 则{\displaystyle \partial f/\partial x=2xy} | ||
…的偏导数 | |||||
微积分 | |||||
边界 | {\displaystyle \partial M}表示{\displaystyle M}的边界 | {\displaystyle \partial \left\{x:\left\Vert x\right\Vert \leq 2\right\}=\left\{x:\left\Vert x\right\Vert =2\right\}} | |||
…的边界 | |||||
拓扑 | |||||
次数 | {\displaystyle \partial f(x)}表示{\displaystyle f(x)}的次数(也记作{\displaystyle \deg f(x)}) | ||||
…的次数 | |||||
多项式 | |||||
⊥ | 垂直 | {\displaystyle x\perp y}表示{\displaystyle x}垂直于{\displaystyle y};更一般的{\displaystyle x}正交于{\displaystyle y}. | 若{\displaystyle I\perp m}和{\displaystyle m\perp n}则{\displaystyle I\parallel n}. | ||
垂直于 | |||||
几何 | |||||
底元素 | {\displaystyle x=\perp }表示{\displaystyle x}是最小的元素. | {\displaystyle \forall x:x\land \perp =\perp } | |||
底元素 | |||||
格理论 | |||||
⊧ | 蕴涵 | {\displaystyle A\models B}表示{\displaystyle A}蕴涵{\displaystyle B},在{\displaystyle A}成立的每个模型中,{\displaystyle B}也成立. | {\displaystyle A\models A\lor \neg A} | ||
蕴涵; | |||||
模型论 | |||||
⊢ | 推导 | {\displaystyle x\vdash y}表示{\displaystyle y}由{\displaystyle x}导出. | {\displaystyle A\rightarrow B\vdash \neg B\rightarrow \neg A} | ||
从…导出 | |||||
命题逻辑, 谓词逻辑 | |||||
◅ | 正规子群 | {\displaystyle N\triangleleft G}表示{\displaystyle N}是{\displaystyle G}的正规子群. | {\displaystyle Z(G)\triangleleft G} | ||
是…的正规子群 | |||||
群论 | |||||
/ | 商群 | {\displaystyle G/H}表示{\displaystyle G}模其子群{\displaystyle H}的商群. |
|
||
模 | |||||
群论 | |||||
≈ | 同构 | {\displaystyle G\approx H}表示{\displaystyle G}同构于{\displaystyle H}。 | {\displaystyle Q/\left\{1,-1\right\}\thickapprox V}, 其中{\displaystyle Q}是四元数群 {\displaystyle V}是 克莱因四群. |
||
同构于 | |||||
群论 | |||||
∝ | 正比 | {\displaystyle G\propto H}表示{\displaystyle G}正比于{\displaystyle H}。 | 若{\displaystyle Q\propto V},则{\displaystyle Q=KV} | ||
正比于 | |||||
所有领域 |