前言
暴力跑的比正解快。
以下暴力(循环展开+fread读入输出优化)
#include<cstdio>
#pragma GCC optimize(3, "Ofast")
int a[200010];
namespace fast_IO{
const int IN_LEN = 10000000, OUT_LEN = 10000000;
char ibuf[IN_LEN], obuf[OUT_LEN], *ih = ibuf + IN_LEN, *oh = obuf, *lastin = ibuf + IN_LEN, *lastout = obuf + OUT_LEN - 1;
inline char getchar_(){return (ih == lastin) && (lastin = (ih = ibuf) + fread(ibuf, 1, IN_LEN, stdin), ih == lastin) ? EOF : *ih++;}
inline void putchar_(const char x){if(oh == lastout) fwrite(obuf, 1, oh - obuf, stdout), oh = obuf; *oh ++= x;}
inline void flush(){fwrite(obuf, 1, oh - obuf, stdout);}
inline int read(){
int x = 0; char ch = ' ';
while (ch < '0' || ch > '9') ch = getchar_();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar_(); return x;
}
inline void write(int x){
if (x < 0) putchar_('-'), x = -x;
if (x > 9) write(x / 10);
putchar_(x % 10 + 48);
}
}
using namespace fast_IO;
#define max(a,b) (a>(b)?a:(b))
int main(){
const int n = read(); int q = read();
for (register int i = 1; i <= n; ++i)
a[i] = read();
while (q--){
const int x = read(), l = read(), rr = read();
register int ans = 0;
const int lft = ((rr - l) >> 2 << 2) + l;
for (register int j = l; j <= lft - 4; j += 4){
(ans < (x ^ a[j + 1])) && (ans = x ^ a[j + 1]);
(ans < (x ^ a[j + 2])) && (ans = x ^ a[j + 2]);
(ans < (x ^ a[j + 3])) && (ans = x ^ a[j + 3]);
(ans < (x ^ a[j + 4])) && (ans = x ^ a[j + 4]);
}
for (register int j = lft; j <= rr; ++j)
ans = max(ans, x ^ a[j + 1]);
write(ans), putchar_('\n');
}
flush(); return 0;
}
题目
给定一个长度为 \(n(1 \leq n \leq 2 \times 10^5)\) 的数列,
给定 \(q(1 \leq q \leq 2 \times 10^5)\) 个询问,
每个询问给定三个整数 \(x, l, r\) 。
在区间 \([l,r]\) 中选定一个数,使它与 \(x\) 的异或值最大。
查询
题解
如果是查询区间是一个固定区间,很容易想到,使用trie树。
那么如果查询不是固定区间,那么显然珂以使用可持久化trie树切掉此题,
预计时间复杂度\(\Theta(n\ logn)\)
但是博主才学疏浅,不会这个算法。
就这么结束了吗?
并没有,显然我们可以用类线段树结构维护trie树,复杂度\(\Theta(n\ log^2n)\)
考场上常数过大 一不小心 TLE了
后来一边query一边建树,就AC了。
代码
#pragma GCC optimize(3, "Ofast")
#include <cstdio>
namespace fast_IO{
const int IN_LEN = 10000000, OUT_LEN = 10000000;
char ibuf[IN_LEN], obuf[OUT_LEN], *ih = ibuf + IN_LEN, *oh = obuf, *lastin = ibuf + IN_LEN, *lastout = obuf + OUT_LEN - 1;
inline char getchar_(){return (ih == lastin) && (lastin = (ih = ibuf) + fread(ibuf, 1, IN_LEN, stdin), ih == lastin) ? EOF : *ih++;}
inline void putchar_(const char x){if(oh == lastout) fwrite(obuf, 1, oh - obuf, stdout), oh = obuf; *oh ++= x;}
inline void flush(){fwrite(obuf, 1, oh - obuf, stdout);}
int read(){
int x = 0; char ch = ' ';
while (ch < '0' || ch > '9') ch = getchar_();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar_(); return x;
}
void write(int x){
if (x < 0) putchar_('-'), x = -x;
if (x > 9) write(x / 10);
putchar_(x % 10 + '0');
}
}
using namespace fast_IO;
struct Trie{
int c[2];
} trie[57108864];
int cnt = 0;
void insert(int x, int rt){
for (register int i = 1 << 29; i; i >>= 1){
bool to = x & i;
if (trie[rt].c[to] == -1){
trie[rt].c[to] = ++cnt;
trie[cnt].c[0] = trie[cnt].c[1] = -1;
}
rt = trie[rt].c[to];
}
}
int query(int x, int rt){
int res = 0;
for (register int i = 1 << 29; i; i >>= 1){
bool to = (x ^ i) & i;
if (~trie[rt].c[to]){
res += i;
rt = trie[rt].c[to];
}
else rt = trie[rt].c[to ^ 1];
}
return res;
}
int a[200005];
struct Seg{
int root;
int lc, rc;
} seg[800005];
inline int max(int a, int b){
return ((a > b) ? a : b);
}
int querySeg(int pos, int l, int r, int x, int y, int v){
if (x <= l && r <= y){
if (!seg[pos].root){
seg[pos].root = ++cnt;
trie[cnt].c[0] = trie[cnt].c[1] = -1;
for (register int i = l; i <= r; ++i)
insert(a[i], seg[pos].root);
}
return query(v, seg[pos].root);
}
int mid = l + r >> 1, res = 0;
if (x <= mid)
res = querySeg(pos << 1, l, mid, x, y, v);
if (y > mid)
res = max(res, querySeg(pos << 1 | 1, mid + 1, r, x, y, v));
return res;
}
int main(){
int n = read(), q = read();
trie[0].c[0] = trie[0].c[1] = -1;
for (register int i = 1; i <= n; ++i)
a[i] = read();
while (q--){
int x = read(), l = read() + 1, r = read() + 1;
write(querySeg(1, 1, n, l, r, x)), putchar_('\n');
}
flush(); return 0;
}