雪花算法

雪花算法(Snowflake)是一种生成分布式全局唯一ID的算法,生成的ID称为Snowflake IDs或snowflakes。这种算法由Twitter创建,并用于推文的ID。

一个Snowflake ID有64位元。前41位是时间戳,表示了自选定的时期以来的毫秒数。 接下来的10位代表计算机ID,防止冲突。 其余12位代表每台机器上生成ID的序列号,这允许在同一毫秒内创建多个Snowflake ID。SnowflakeID基于时间生成,故可以按时间排序。[1] 此外,一个ID的生成时间可以由其自身推断出来,反之亦然。该特性可以用于按时间筛选ID,以及与之联系的对象

 

SnowFlake算法的优点:

  1. 高性能高可用:生成时不依赖于数据库,完全在内存中生成。
  2. 容量大:每秒中能生成数百万的自增ID。
  1. ID自增:存入数据库中,索引效率高。

SnowFlake算法的缺点:

  1. 依赖与系统时间的一致性,如果系统时间被回调,或者改变,可能会造成id冲突或者重复。
public class IdWorker {
 
	//因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。
 
	//机器ID  2进制5位  32位减掉1位 31个
	private long workerId;
	//机房ID 2进制5位  32位减掉1位 31个
	private long datacenterId;
	//代表一毫秒内生成的多个id的最新序号  12位 4096 -1 = 4095 个
	private long sequence;
	//设置一个时间初始值    2^41 - 1   差不多可以用69年
	private long twepoch = 1585644268888L;
	//5位的机器id
	private long workerIdBits = 5L;
	//5位的机房id
	private long datacenterIdBits = 5L;
	//每毫秒内产生的id数 2 的 12次方
	private long sequenceBits = 12L;
	// 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
	private long maxWorkerId = -1L ^ (-1L << workerIdBits);
	// 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内
	private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
 
	private long workerIdShift = sequenceBits;
	private long datacenterIdShift = sequenceBits + workerIdBits;
	private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
	private long sequenceMask = -1L ^ (-1L << sequenceBits);
	//记录产生时间毫秒数,判断是否是同1毫秒
	private long lastTimestamp = -1L;
	public long getWorkerId(){
		return workerId;
	}
	public long getDatacenterId() {
		return datacenterId;
	}
	public long getTimestamp() {
		return System.currentTimeMillis();
	}
 
 
 
	public IdWorker(long workerId, long datacenterId, long sequence) {
 
		// 检查机房id和机器id是否超过31 不能小于0
		if (workerId > maxWorkerId || workerId < 0) {
			throw new IllegalArgumentException(
					String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
		}
 
		if (datacenterId > maxDatacenterId || datacenterId < 0) {
 
			throw new IllegalArgumentException(
					String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
		}
		this.workerId = workerId;
		this.datacenterId = datacenterId;
		this.sequence = sequence;
	}
 
	// 这个是核心方法,通过调用nextId()方法,让当前这台机器上的snowflake算法程序生成一个全局唯一的id
	public synchronized long nextId() {
		// 这儿就是获取当前时间戳,单位是毫秒
		long timestamp = timeGen();
		if (timestamp < lastTimestamp) {
 
			System.err.printf(
					"clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
			throw new RuntimeException(
					String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
							lastTimestamp - timestamp));
		}
 
		// 下面是说假设在同一个毫秒内,又发送了一个请求生成一个id
		// 这个时候就得把seqence序号给递增1,最多就是4096
		if (lastTimestamp == timestamp) {
 
			// 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,
			//这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
			sequence = (sequence + 1) & sequenceMask;
			//当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID
			if (sequence == 0) {
				timestamp = tilNextMillis(lastTimestamp);
			}
 
		} else {
			sequence = 0;
		}
		// 这儿记录一下最近一次生成id的时间戳,单位是毫秒
		lastTimestamp = timestamp;
		// 这儿就是最核心的二进制位运算操作,生成一个64bit的id
		// 先将当前时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后12 bit
		// 最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型
		return ((timestamp - twepoch) << timestampLeftShift) |
				(datacenterId << datacenterIdShift) |
				(workerId << workerIdShift) | sequence;
	}
 
	/**
	 * 当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID
	 * @param lastTimestamp
	 * @return
	 */
	private long tilNextMillis(long lastTimestamp) {
 
		long timestamp = timeGen();
 
		while (timestamp <= lastTimestamp) {
			timestamp = timeGen();
		}
		return timestamp;
	}
	//获取当前时间戳
	private long timeGen(){
		return System.currentTimeMillis();
	}
 
	/**
	 *  main 测试类
	 * @param args
	 */
	public static void main(String[] args) {
		System.out.println(1&4596);
		System.out.println(2&4596);
		System.out.println(6&4596);
		System.out.println(6&4596);
		System.out.println(6&4596);
		System.out.println(6&4596);
//		IdWorker worker = new IdWorker(1,1,1);
//		for (int i = 0; i < 22; i++) {
//			System.out.println(worker.nextId());
//		}
	}
}

  

 

上一篇:报错:UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte 0x80 in position 20: illegal multibyte sequence


下一篇:vue_之计算属性、组件化开发、ref属性、动态化组件