大意: 平面上n个点每个点坐标为(x,0)或(0,y), 求任意两点距离平方最大值的最小值.
二分答案, 转化为判定最大值是否<=e, 按$x$排序后, 因为固定左端点, $y$绝对值的最大值是跟右端点单调的, 滑动一个长度平方不超过e的区间, 同时保证右端点$x$的绝对值不超过左端点, 这样对于左端点在$x$轴的情况一定是最优的, 同样再固定右端点倒序处理正半轴的情况.
#include <iostream> #include <random> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head #ifdef ONLINE_JUDGE const int N = 1e6+10; #else const int N = 111; #endif int n; pii a[N]; int Lmin[N], Lmax[N], Rmin[N], Rmax[N]; ll sqr(ll x) {return x*x;} ll ans = 1e18; int chk(ll e) { if (ans<=e) return 1; int now = 1; ll ans = 1e18; REP(i,1,n) { if (a[i].x>0) break; while (now<n&&sqr(a[now+1].x-a[i].x)<=e&&abs(a[now+1].x)<=abs(a[i].x)) ++now; while (abs(a[now].x)>abs(a[i].x)) --now; int U = -1e9, D = 1e9; if (i>1) U=max(U,Lmax[i-1]),D=min(D,Lmin[i-1]); if (now<n) U=max(U,Rmax[now+1]),D=min(D,Rmin[now+1]); ans = min(ans, max(sqr(U-D),max(sqr(U),sqr(D))+max(sqr(a[i].x),sqr(a[now].x)))); } now = n; PER(i,1,n) { if (a[i].x<0) break; while (now>1&&sqr(a[now-1].x-a[i].x)<=e&&abs(a[now-1].x)<=abs(a[i].x)) --now; while (abs(a[now].x)>abs(a[i].x)) ++now; int U = -1e9, D = 1e9; if (i<n) U=max(U,Rmax[i+1]),D=min(D,Rmin[i+1]); if (now>1) U=max(U,Lmax[now-1]),D=min(D,Lmin[now-1]); ans = min(ans, max(sqr(U-D),max(sqr(U),sqr(D))+max(sqr(a[i].x),sqr(a[now].x)))); } return ans<=e; } int main() { scanf("%d", &n); REP(i,1,n) scanf("%d%d", &a[i].x,&a[i].y); sort(a+1,a+1+n); Lmin[1]=Lmax[1]=a[1].y; REP(i,2,n) { Lmin[i]=min(Lmin[i-1],a[i].y); Lmax[i]=max(Lmax[i-1],a[i].y); } Rmin[n]=Rmax[n]=a[n].y; PER(i,1,n-1) { Rmin[i]=min(Rmin[i+1],a[i].y); Rmax[i]=max(Rmax[i+1],a[i].y); } ll l = 0, r = min(sqr(Lmin[n]-Lmax[n]),sqr(a[1].x-a[n].x)); ans = r; while (l<=r) { if (chk(mid)) ans=mid,r=mid-1; else l=mid+1; } printf("%lld\n", ans); }