【Caffe学习一】基于ROC-RK3399-PC/Ubuntu18.04的Caffe-SSD-CPU 安装编译

目录

一. 安装前准备工作:

二. Installation


重要提醒:请仔细阅读GitHub上关于Caffe-SSD网络的配置安装教程!!

                   https://github.com/weiliu89/caffe/tree/ssd#installation

 

一. 安装前准备工作:

1. 更新Linux系统软件

    :~$ sudo apt-get update   #更新软件列表 安装必要的依赖库

2. 安装GitHub依赖包,可以使用git指令从GitHub下载

    :~$ sudo apt-get install git cmake build-essential

3. 安装Caffe依赖包
    :~$ sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev  libhdf5-serial-dev protobuf-compiler
    :~$ sudo apt-get install --no-install-recommends libboost-all-dev
    :~$ sudo apt-get install libatlas-base-dev liblapack-dev libopenblas-dev
    :~$ sudo apt-get install python-dev python-opencv (可能要源码编译OpenCV,参考链接https://mp.csdn.net/postedit/88639372)
    :~$ sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

二. Installation

1. Get the code. We will call the directory that you cloned Caffe into $CAFFE_ROOT(即/home/usrname)

    :~$ git clone https://github.com/weiliu89/caffe.git

    :~$ cd caffe

    :~/caffe$ git checkout ssd

2. Modify Makefile.config according to your Caffe installation.

    :~/caffe$ cp Makefile.config.example Makefile.config

3. 打开并修改Makefile.config (a lot of kengs)

    :~/caffe$ vim Makefile.config

    # -------------------------------------------------------------- #

  •     去掉 CPU_ONLY :=1的注释
  •     
  •     OPENCV_VERSION  := 3
  •  
  •     注释掉CUDA有关的行
  •     # CUDA_DIR := /usr/local/cuda  
  •     # CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \  
  •     #        -gencode arch=compute_20,code=sm_21 \  
  •     #        -gencode arch=compute_30,code=sm_30 \  
  •     #        -gencode arch=compute_35,code=sm_35 \  
  •     #        -gencode arch=compute_50,code=sm_50 \  
  •     #        -gencode arch=compute_50,code=compute_50
  •  
  •     # TEST_GPUID := 0
  •  
  •     去掉WITH_PYTHON_LAYER := 1的注释
  •  
  •     INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
  •     LIBRARY_DIRS:= $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/aarch64-linux-gnu /usr/lib/aarch64-linux-gnu/hdf5/serial

    # -------------------------------------------------------------- #   

 

4. 打开并修改Makefile

    :~/caffe$ vim Makefile

    # -------------------------------------------------------------- # 

    ifeq ($(USE_OPENCV), 1)

                LIBRARIES += opencv_core opencv_highgui opencv_imgproc opencv_videoio

    # -------------------------------------------------------------- # 

5. 编译安装Caffe

    :~/caffe$ make all -j8
    :~/caffe$ make test -j8
    :~/caffe$ make runtest -j8    # (Optional)

    :~/caffe$ make pycaffe

6. 编译python-caffe接口 (不需要这一步就可以在MNIST数据集上测试Caffe)

    参考链接:https://blog.csdn.net/u010193446/article/details/53259294,其第五步.

                      https://www.cnblogs.com/venus024/p/5664103.html

    提醒:因为我当时用pip下载其他Python依赖库时出现了问题,比如镜像源无法使用或者没有权限。因此我使用以下命令逐个

               安装CAFFE_ROOT/caffe/python路径下的requirements.txt中的库.

                pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pkg-**

 

7. 将Caffe的Python库路径添加到PYTHONPATH环境变量中

vim ~/.bashrc

export CAFFE_ROOT=/data0/zzw/caffe
export PYTHONPATH=$CAFFE_ROOT/python:$PYTHONPATH

source ~/.bashrc

8. 测试Caffe是否安装成功

    :~/caffe$ python

    >>> import caffe        # it works that means your Caffe is successfully installed

    >>>


 

2019.03.19      各种bug导致未编译成功,应该是Ubuntu18.04的版本和以上编译方法不匹配问题!!!

2019.03.20      历时三天,终于编译安装成功.

 



Caffe中的Makefile.config的解释,参考链接:https://blog.csdn.net/JiaJunLee/article/details/52068230

Makefile.config修改后的源码如下:

    ## Refer to http://caffe.berkeleyvision.org/installation.html
    # Contributions simplifying and improving our build system are welcome!

    # cuDNN acceleration switch (uncomment to build with cuDNN).
    # USE_CUDNN := 0

    # CPU-only switch (uncomment to build without GPU support).
    CPU_ONLY := 1

    # uncomment to disable IO dependencies and corresponding data layers
    # USE_OPENCV := 0
    # USE_LEVELDB := 0
    # USE_LMDB := 0

    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    #   You should not set this flag if you will be reading LMDBs with any
    #   possibility of simultaneous read and write
    # ALLOW_LMDB_NOLOCK := 1

    # Uncomment if you're using OpenCV 3
    OPENCV_VERSION := 3

    # To customize your choice of compiler, uncomment and set the following.
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    # CUSTOM_CXX := g++

    # CUDA directory contains bin/ and lib/ directories that we need.
    # CUDA_DIR := /usr/local/cuda
    # On Ubuntu 14.04, if cuda tools are installed via
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    # CUDA_DIR := /usr

    # CUDA architecture setting: going with all of them.
    # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
    # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
    # CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
    #        -gencode arch=compute_20,code=sm_21 \
    #        -gencode arch=compute_30,code=sm_30 \
    #        -gencode arch=compute_35,code=sm_35 \
    #        -gencode arch=compute_50,code=sm_50 \
    #        -gencode arch=compute_52,code=sm_52 \
    #        -gencode arch=compute_60,code=sm_60 \
    #        -gencode arch=compute_61,code=sm_61 \
    #       -gencode arch=compute_61,code=compute_61

    # BLAS choice:
    # atlas for ATLAS (default)
    # mkl for MKL
    # open for OpenBlas
    BLAS := open
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    # Leave commented to accept the defaults for your choice of BLAS
    # (which should work)!
    # BLAS_INCLUDE := /path/to/your/blas
    # BLAS_LIB := /path/to/your/blas

    # Homebrew puts openblas in a directory that is not on the standard search path
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    # BLAS_LIB := $(shell brew --prefix openblas)/lib

    # This is required only if you will compile the matlab interface.
    # MATLAB directory should contain the mex binary in /bin.
    # MATLAB_DIR := /usr/local
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app

    # NOTE: this is required only if you will compile the python interface.
    # We need to be able to find Python.h and numpy/arrayobject.h.
    PYTHON_INCLUDE := /usr/include/python2.7 \
            /usr/lib/python2.7/site-packages/numpy/core/include/
    #/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/numpy
    # Anaconda Python distribution is quite popular. Include path:
    # Verify anaconda location, sometimes it's in root.
    # ANACONDA_HOME := $(HOME)/anaconda
    # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
            # $(ANACONDA_HOME)/include/python2.7 \
            # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include

    # Uncomment to use Python 3 (default is Python 2)
    # PYTHON_LIBRARIES := boost_python3 python3.5m
    # PYTHON_INCLUDE := /usr/include/python3.5m \
    # /usr/lib/python3.5/dist-packages/numpy/core/include

    # We need to be able to find libpythonX.X.so or .dylib.
    PYTHON_LIB := /usr/lib
    # PYTHON_LIB := $(ANACONDA_HOME)/lib

    # Homebrew installs numpy in a non standard path (keg only)
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib

    # Uncomment to support layers written in Python (will link against Python libs)
    WITH_PYTHON_LAYER := 1

    # Whatever else you find you need goes here.
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/aarch64-linux-gnu /usr/lib /usr/lib/aarch64-linux-gnu/hdf5/serial      (注意:aarch64-linux-gpu可替换为x86_64-linux-gnu)

    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general            dependencies
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    # LIBRARY_DIRS += $(shell brew --prefix)/lib

    # NCCL acceleration switch (uncomment to build with NCCL)
    # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
    # USE_NCCL := 1

    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    # USE_PKG_CONFIG := 1

    # N.B. both build and distribute dirs are cleared on `make clean`
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute

    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    # DEBUG := 1

    # The ID of the GPU that 'make runtest' will use to run unit tests.
    # TEST_GPUID := 0

    # enable pretty build (comment to see full commands)
    Q ?= @




参考链接:

                https://zhuanlan.zhihu.com/p/48603525

                https://blog.csdn.net/Y_AOZHEN/article/details/84137377

                https://blog.csdn.net/u010193446/article/details/53259294

                https://www.itread01.com/content/1547169842.html

                https://blog.csdn.net/weixin_38125866/article/details/81951548

                https://blog.csdn.net/DonatelloBZero/article/details/51304162

上一篇:深入剖析Java虚拟机内存模型


下一篇:在Openstack上部署compute节点上时,开启服务openstack-nova-compute.service无法启动的解决方法