16日上午9点,2016云栖大会“开源大数据技术专场” (全天)在阿里云技术专家封神的主持下开启。通过封神了解到,在上午的专场中,阿里云高级技术专家无谓、阿里云技术专家封神、阿里巴巴中间件技术部高级技术专家天梧、阿里巴巴中间件技术部资深技术专家纪君祥将给大家带来Hadoop、Spark、HBase、JStorm Turbo等内容。
无谓:Hadoop过去现在未来,从阿里云梯到E-MapReduce
阿里云高级技术专家 无谓
从开辟大数据先河至现在,风雨十年,Hadoop已成为企业的通用大数据框架。而作为上午的第一个演讲,无谓首先给我们总结了Hadoop这十年,也是从离线到在线的十年,其中意义重大的事情有:YARN成为大数据操作系统;Hadoop成为企业级解决方案,涵盖数据可视化工具、存储、计算、数据管理等;机器学习和人工智能的支持; Mahout->oryx,批处理到实时处理的学习工具。
而在这段时间,阿里从2008年就已经参与到Hadoop中,其主要阶段可概括为: 2008-2009期间,建立了多部门独立的Hadoop集群;2009-2015,主要做云梯集群和服务,包括:集群统一运维,专业的开发团队;数据统一管理,集团层面的全局视图;资源错峰分配,整体成本最优;2015-至今,阿里云E-MapReduce,阿里云对外的Hadoop基础服务。
随后,无谓还重点分享了阿里内部的Hadoop服务云梯:全局资源调度:支持业务优先级(基于Fair Scheduler);安全性,HDFS上的扩展ACL,Hive安全认证和授权;稳定性,消除异常作业对全局的影响Master HA;扩展性:Master节点的单点性能压力,跨机房 的部署架构;云梯医生:集群诊断系统,最后,通过无谓,我们还体会了阿里云分享的技术红利E-MapReduce。
封神: Spark实践与探索
阿里云技术专家 封神
封神专注于大数据领域,拥有7年的分布式引擎开发经验,先后参与了上万台Hadoop、ODPS集群的开发。在本次演讲中,他主要介绍了数据处理技术、About Spark、阿里的Spark历程、Spark与云,及Spark未来多个方面。
在时下流行大数据技术对比中,封神首先从数据处理时间与数据量两个方面维度进行了切入,在这个过程中,我们会发现,没有哪个软件能解决所有的问题,能解决问题也是在一个范围内,即使是Spark、Flink等。目前存在有意思的事情是:Greenplum类似的MPP引擎想处理大数据的需求,Hadoop等被定位为大数据的引擎也想解决小数据的问题(列式存储、或者也加入一些索引)。图中右上角的想往左边靠,减少延迟,图中左下角的想往上面靠,增大能处理的数据量。此外在DB/MPP与Hadoop的对比上,Hadoop生态圈为何如何火爆也能有所体现:首先,在硬件需求上,DB/MPP可能需要小型机和高端存储,同时也需要RAID,而Hadoop只需要普通的PC机;容错性上,DB/MPP重跑即可,而Hadoop则需要容错;在调度模型上,DB/MPP使用了基于线程的调度,而Hadoop则需要做CPU/Memory的调度;最后,在衡量指标上DB/MPP一般以QPS为标准,而Hadoop相关系统一般更看重吞吐。
Hadoop Database,是一个基于Google BigTable论文设计的高可靠性、高性能、可伸缩的分布式存储系统,它的具体特性有:松散表,实时更新、增量导入、多维删除,随机查询、范围查询,高伸缩、高可用、高可靠、高性能、高适应,在线分布式NOSQL数据库。
与Hadoop的天然集成让HBase天生具备了很多优势,在阿里之外,同样得到了 Intel、Facebook、Cloudera、Hortonworks、小米等公司的支持。而在此之外,HBase的其他基因同样深受大数据玩家的喜爱,包括:自动分区,分区自动分裂,分区在线Merge,可应对数据爆发式增长和访问爆发式增长;LSM,写吞吐高,不受SSD随机写入放大干扰,不受空间放大干扰;存储计算分离,负载均衡更高效,资源扩容更节省,存储优化更便捷(非对称副本冗余:异构介质、Erasure Code等)。
可以说,HBase为大数据而生。然而就如任何开源软件,HBase的使用同样需要大量的研发投入。在这里,阿里也基于阿里巴巴/蚂蚁的环境和业务需求,对社区HBase进行深度定制与改进,从内核引擎、解决方案、稳定护航、发展支撑等全方位提供一站式大数据基础存储服务,就拿灾备体系来说,包括集群数据复制的诉求、多集群数据复制、流量切换、跨集群一致性保证、深度优化的宕机恢复能力等方面。集群数据复制的诉求,数据一致,延迟低,吞吐大,多源多目标,链路粒度细,异构系统,可视可追踪等;多集群数据复制,异步模式,同步模式,支持多地多单元、表级复制、循环流动,支持延迟/拓扑/复制详情可视,支持数据的链路追踪,支持实时复制到异构系统,并发、吞吐、实时的有效权衡异步模式;流量切换,虚拟地址映射,支持一键切换、自动切换;跨集群一致性保证,基于读写保护的强一致;深度优化的宕机恢复能力。
天梧表示,在此之外,在HBase上阿里还做了调整、报警、健康等各个方面的工作。而在未来,更大硬件支持、容器化部署也将是一大研究的方向。
纪君祥:阿里巴巴实时计算平台 JStorm Turbo
阿里巴巴中间件技术部资深技术专家 纪君祥
通过纪君祥了解到,从2013年4月3日起,JStorm已经发布了25个版本,部署方式包括Standalone、JStorm-on-yarn、JStorm-on-docker等方式,部署超过4000台主机,支撑了1500以上的应用,拥有超过2000+的topologies。
在JStorm与Storm区别上,纪君祥提到JStorm更是一个流处理生态系统,而不是简单的一个流计算框架。同时,对于企业来说JStorm还是一个成熟的Java版Storm,它不仅运营更快、更稳定,也具备了更多的功能。
PS,感谢秦海龙对本文的指导和贡献
秦海龙,杭州以数科技公司大数据工程师。Java语言、Scala语言,Hadoop生态、Spark大数据处理技术爱好者。