题干:
给你一个n,求n mod 1 + n mod 2 + n mod 3 + … + n mod m.即∑1mnmod(i)
思路:
∑1mnmod(i) = ∑1mn−(n∣i)mod(i) = n*m-∑1m(n∣i)mod(i)
对于n|i(也就是n/i的整数部分)一定出现在区间[L,R]的最后一个即[n|(i+1)+1,n|i] (打表找规律得)
#include <cstdio>
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <map>
#include <vector>
#include <cstring>
#define LL long long
using namespace std;
const LL mod = 1e9+7;
int main()
{
LL n,m,ans=0,sum=0;
scanf("%lld%lld",&n,&m);
ans=((m%mod)*(n%mod))%mod;
long long up=min(m,n);
for(LL i=1;i<=up;i++){
LL r=min(n/(n/i),up);
LL st=r+i,num=r-i+1;
if(st&1) num/=2;
else st/=2;
sum=(sum+(st%mod)*(num%mod)%mod*((n/i)%mod))%mod;
i=r;
}
printf("%lld\n",(ans-sum+mod)%mod);
return 0;
}