Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n?
Example:
Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's: 1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
这道题实际上是 卡塔兰数 Catalan Numbe 的一个例子,如果对卡塔兰数不熟悉的童鞋可能真不太好做。话说其实我也是今天才知道的好嘛 -.-|||,为啥我以前都不知道捏?!为啥卡塔兰数不像斐波那契数那样人尽皆知呢,是我太孤陋寡闻么?!不过今天知道也不晚,不断的学习新的东西,这才是刷题的意义所在嘛! 好了,废话不多说了,赶紧回到题目上来吧。我们先来看当 n = 1 的情况,只能形成唯一的一棵二叉搜索树,n分别为 1,2,3 的情况如下所示:
n = n =
/ \ n =
\ / / / \ \ / / \ \
就跟斐波那契数列一样,我们把 n = 0 时赋为1,因为空树也算一种二叉搜索树,那么 n = 1 时的情况可以看做是其左子树个数乘以右子树的个数,左右子树都是空树,所以1乘1还是1。那么 n = 2 时,由于1和2都可以为根,分别算出来,再把它们加起来即可。n = 2 的情况可由下面式子算出(这里的 dp[i] 表示当有i个数字能组成的 BST 的个数):
dp[2] = dp[0] * dp[1] (1为根的情况,则左子树一定不存在,右子树可以有一个数字)
+ dp[1] * dp[0] (2为根的情况,则左子树可以有一个数字,右子树一定不存在)
同理可写出 n = 3 的计算方法:
dp[3] = dp[0] * dp[2] (1为根的情况,则左子树一定不存在,右子树可以有两个数字)
+ dp[1] * dp[1] (2为根的情况,则左右子树都可以各有一个数字)
+ dp[2] * dp[0] (3为根的情况,则左子树可以有两个数字,右子树一定不存在)
由此可以得出卡塔兰数列的递推式为:
我们根据以上的分析,可以写出代码如下:
解法一:
class Solution {
public:
int numTrees(int n) {
vector<int> dp(n + );
dp[] = dp[] = ;
for (int i = ; i <= n; ++i) {
for (int j = ; j < i; ++j) {
dp[i] += dp[j] * dp[i - j - ];
}
}
return dp[n];
}
};
由卡特兰数的递推式还可以推导出其通项公式,即 C(2n,n)/(n+1),表示在 2n 个数字中任取n个数的方法再除以 n+1,只要你还没有忘记高中的排列组合的知识,就不难写出下面的代码,注意在相乘的时候为了防止整型数溢出,要将结果 res 定义为长整型,参见代码如下:
解法二:
class Solution {
public:
int numTrees(int n) {
long res = ;
for (int i = n + ; i <= * n; ++i) {
res = res * i / (i - n);
}
return res / (n + );
}
};
类似题目:
Different Ways to Add Parentheses
参考资料: