可视化
添加变量
tf.summary.histogram( "weights1", weights1) # 可视化观看变量
还有添加图像和音频、
常量
tf.summary.scalar('x', x)
添加embedding
python
def checkpoint(sess):
# Output directory for models and summaries
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
print("Writing to {}\n".format(out_dir))
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)
saver.save(sess, os.path.join(out_dir, "model.ckpt"), 1)
合并
merged = tf.summary.merge_all()
添加视图
writer=tf.summary.FileWriter('log',sess.graph)
注意!如果Chrome打不开视图,可以尝试换个浏览器。
-- CMD下启动 去 127.0.0.1:6006 查看
tensorboard.exe --logdir=log
调试
例如下面这种简陋的方式,将要观察的变量放进去再取出来就行。
当然有更好的办法例如
https://www.cnblogs.com/huangshiyu13/p/6721805.html
code
summary, _prediction1, _logits1, _prediction_argmax1, _Y_argmax1, _X2, _correct_pred1, _accuracy1, _loss_op1 = \
sess.run([merged, prediction, logits, prediction_argmax, Y_argmax, X, correct_pred, accuracy, loss_op],
feed_dict={X: batch_x, Y: batch_y})
日志
复杂的变量打印是不够的,记录到本地就好了
code
handler = logging.handlers.RotatingFileHandler(LOG_FILE, maxBytes=1024 * 1024*1024, backupCount=5) # 实例化handler
#fmt = '%(asctime)s - %(filename)s:%(lineno)s - %(name)s - %(message)s'
fmt = '%(asctime)s - %(filename)s:%(lineno)s - %(message)s'
formatter = logging.Formatter(fmt) # 实例化formatter
handler.setFormatter(formatter) # 为handler添加formatter
logger = logging.getLogger('tst') # 获取名为tst的logger
logger.addHandler(handler) # 为logger添加handler
logger.setLevel(logging.DEBUG)
logger.info('==================================')
def myLog(obj):
logger.info("obj begin===========================" + str(len(obj)))
for l1 in obj:
# print(l1)
logger.info(l1)