题意
求解 $n$ 个模方程 $x \equiv a (mod \ b)$,不保证模数互素($1 \leq n \leq 100$,$0 \leq b < a< 10^5$).
分析
套扩展中国剩余定理的模板,
然而__int128都会爆(好像也可以改成不会爆的),
不管,直接扔给队友改成Python版。
def gcd(a,b): if b==0: return a else : return gcd(b,a%b) def exgcd(a,b): if b == 0: return 1,0 else: y,x = exgcd(b, a%b) y = y - (a//b)*x return x,y def inv(a,b): x,y = exgcd(a,b) while x<0 : x = b+x return x,y MAXN = int(1e6+10) C = [0]*110 M = [0]*110 str = input().split(" ") k = int(str[0]) lim = int(str[1]) for i in range(1,k+1): str = input().split(" ") M[i] = int(str[0]) C[i] = int(str[1]) flag = True for i in range(2,k+1): M1 = M[i-1] M2 = M[i] C2 = C[i] C1 = C[i-1] T = gcd(M1,M2) if (C2-C1)%T != 0: flag = False break M[i] = (M1*M2)//T x,y = inv(M1//T,M2//T) C[i] = (x * (C2 - C1) // T ) % (M2 // T) * M1 +C1 C[i] = (C[i] % M[i] + M[i]) % M[i] if flag: if C[k] > lim : print("he was probably lying") else : print(C[k]) else : print("he was definitely lying")