vins_fusion学习笔记

Vins-Fusion源码:https://github.com/HKUST-Aerial-Robotics/VINS-Fusion

摘要

应项目需要,侧重学习stereo+gps融合

转载几篇写的比较好的博客

1. 萌新学VINS-Fusion(三)------双目和GPS融合

主函数文件
与GPS融合的程序入口在KITTIGPSTest.cpp文件中,数据为KITTI数据集
数据集为 http://www.cvlibs.net/datasets/kitti/raw_data.php
以 [2011_10_03_drive_0027_synced]为例
https://s3.eu-central-1.amazonaws.com/avg-kitti/raw_data/2011_10_03_drive_0027/2011_10_03_drive_0027_sync.zip

main函数与之前的main函数相似,都要进行ros节点初始化,然后读取参数,区别在于该数据集的图像和gps数据均为文件读取方式,将gps数据封装进ros 的sensor_msgs::NavSatFix 数据类型里,以gps为topic播发出去,而双目图像则直接放到estimator进行vio,将vio得到的结果再播发出去,方便后面的订阅和与GPS的融合。

global_fusion
所有的与gps的融合在global_fusion文件夹中,该部分的文件入口是一个rosnode文件globalOptNode.cpp,主函数很短,如下

int main(int argc, char **argv)
{
ros::init(argc, argv, "globalEstimator");
ros::NodeHandle n("~");

global_path = &globalEstimator.global_path;

ros::Subscriber sub_GPS = n.subscribe("/gps", 100, GPS_callback);
ros::Subscriber sub_vio = n.subscribe("/vins_estimator/odometry", 100, vio_callback);
pub_global_path = n.advertise<nav_msgs::Path>("global_path", 100);
pub_global_odometry = n.advertise<nav_msgs::Odometry>("global_odometry", 100);
pub_car = n.advertise<visualization_msgs::MarkerArray>("car_model", 1000);
ros::spin();
return 0;
}

代码很简单,订阅topic(/gps)在GPS_callback回调函数中接收并处理gps数据,订阅topic(/vins_estimator/odometry)在vio_callback回调函数中接收并处理vio的定位数据。
并且生成了三个发布器,用于将结果展示在rviz上。

GlobalOptimization类
所有的融合算法都是在GlobalOptimization类中,对应的文件为globalOpt.h和globalOpt.cpp,并且ceres优化器的相关定义在Factors.h中。
GlobalOptimization类中的函数和变量如下

class GlobalOptimization
{
public:
GlobalOptimization();
~GlobalOptimization();
void inputGPS(double t, double latitude, double longitude, double altitude, double posAccuracy);
void inputOdom(double t, Eigen::Vector3d OdomP, Eigen::Quaterniond OdomQ);
void getGlobalOdom(Eigen::Vector3d &odomP, Eigen::Quaterniond &odomQ);
nav_msgs::Path global_path;

private:
void GPS2XYZ(double latitude, double longitude, double altitude, double* xyz);
void optimize();
void updateGlobalPath();

// format t, tx,ty,tz,qw,qx,qy,qz
map<double, vector<double>> localPoseMap;
map<double, vector<double>> globalPoseMap;
map<double, vector<double>> GPSPositionMap;
bool initGPS;
bool newGPS;
GeographicLib::LocalCartesian geoConverter;
std::mutex mPoseMap;
Eigen::Matrix4d WGPS_T_WVIO;
Eigen::Vector3d lastP;
Eigen::Quaterniond lastQ;
std::thread threadOpt;

};

inputGPS和inputOdom两个函数将回调函数中的gps和vio数据导入,getGlobalOdom为获取融合后位姿函数。
GPS2XYZ函数是将GPS的经纬高坐标转换成当前的坐标系的函数,updateGlobalPath顾名思义更新全局位姿函数。
融合算法的实现主要就是在optimize函数中,接下来进行详细介绍。

注意其中几个变量localPoseMap中保存着vio的位姿,GPSPositionMap中保存着gps数据,globalPoseMap中保存着优化后的全局位姿。

融合算法(optimize函数)

void GlobalOptimization::optimize()
{
while(true)
{
if(newGPS)
{
newGPS = false;
printf("global optimization\n");
TicToc globalOptimizationTime;

ceres::Problem problem;
ceres::Solver::Options options;
options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
//options.minimizer_progress_to_stdout = true;
//options.max_solver_time_in_seconds = SOLVER_TIME * 3;
options.max_num_iterations = 5;
ceres::Solver::Summary summary;
ceres::LossFunction *loss_function;
loss_function = new ceres::HuberLoss(1.0);
ceres::LocalParameterization* local_parameterization = new ceres::QuaternionParameterization();

//add param
mPoseMap.lock();
int length = localPoseMap.size();
// w^t_i w^q_i
double t_array[length][3];
double q_array[length][4];
map<double, vector<double>>::iterator iter;
iter = globalPoseMap.begin();
for (int i = 0; i < length; i++, iter++)
{
t_array[i][0] = iter->second[0];
t_array[i][1] = iter->second[1];
t_array[i][2] = iter->second[2];
q_array[i][0] = iter->second[3];
q_array[i][1] = iter->second[4];
q_array[i][2] = iter->second[5];
q_array[i][3] = iter->second[6];
problem.AddParameterBlock(q_array[i], 4, local_parameterization);
problem.AddParameterBlock(t_array[i], 3);
}

map<double, vector<double>>::iterator iterVIO, iterVIONext, iterGPS;
int i = 0;
for (iterVIO = localPoseMap.begin(); iterVIO != localPoseMap.end(); iterVIO++, i++)
{
//vio factor
iterVIONext = iterVIO;
iterVIONext++;
if(iterVIONext != localPoseMap.end())
{
Eigen::Matrix4d wTi = Eigen::Matrix4d::Identity();
Eigen::Matrix4d wTj = Eigen::Matrix4d::Identity();
wTi.block<3, 3>(0, 0) = Eigen::Quaterniond(iterVIO->second[3], iterVIO->second[4], 
iterVIO->second[5], iterVIO->second[6]).toRotationMatrix();
wTi.block<3, 1>(0, 3) = Eigen::Vector3d(iterVIO->second[0], iterVIO->second[1], iterVIO->second[2]);
wTj.block<3, 3>(0, 0) = Eigen::Quaterniond(iterVIONext->second[3], iterVIONext->second[4], 
iterVIONext->second[5], iterVIONext->second[6]).toRotationMatrix();
wTj.block<3, 1>(0, 3) = Eigen::Vector3d(iterVIONext->second[0], iterVIONext->second[1], iterVIONext->second[2]);
Eigen::Matrix4d iTj = wTi.inverse() * wTj;
Eigen::Quaterniond iQj;
iQj = iTj.block<3, 3>(0, 0);
Eigen::Vector3d iPj = iTj.block<3, 1>(0, 3);

ceres::CostFunction* vio_function = RelativeRTError::Create(iPj.x(), iPj.y(), iPj.z(),
iQj.w(), iQj.x(), iQj.y(), iQj.z(),
0.1, 0.01);
problem.AddResidualBlock(vio_function, NULL, q_array[i], t_array[i], q_array[i+1], t_array[i+1]);
}
//gps factor
double t = iterVIO->first;
iterGPS = GPSPositionMap.find(t);
if (iterGPS != GPSPositionMap.end())
{
ceres::CostFunction* gps_function = TError::Create(iterGPS->second[0], iterGPS->second[1], 
iterGPS->second[2], iterGPS->second[3]);
//printf("inverse weight %f \n", iterGPS->second[3]);
problem.AddResidualBlock(gps_function, loss_function, t_array[i]);

}

}
//mPoseMap.unlock();
ceres::Solve(options, &problem, &summary);
//std::cout << summary.BriefReport() << "\n";

// update global pose
//mPoseMap.lock();
iter = globalPoseMap.begin();
for (int i = 0; i < length; i++, iter++)
{
vector<double> globalPose{t_array[i][0], t_array[i][1], t_array[i][2],
q_array[i][0], q_array[i][1], q_array[i][2], q_array[i][3]};
iter->second = globalPose;
if(i == length - 1)
{
Eigen::Matrix4d WVIO_T_body = Eigen::Matrix4d::Identity(); 
Eigen::Matrix4d WGPS_T_body = Eigen::Matrix4d::Identity();
double t = iter->first;
WVIO_T_body.block<3, 3>(0, 0) = Eigen::Quaterniond(localPoseMap[t][3], localPoseMap[t][4], 
localPoseMap[t][5], localPoseMap[t][6]).toRotationMatrix();
WVIO_T_body.block<3, 1>(0, 3) = Eigen::Vector3d(localPoseMap[t][0], localPoseMap[t][1], localPoseMap[t][2]);
WGPS_T_body.block<3, 3>(0, 0) = Eigen::Quaterniond(globalPose[3], globalPose[4], 
globalPose[5], globalPose[6]).toRotationMatrix();
WGPS_T_body.block<3, 1>(0, 3) = Eigen::Vector3d(globalPose[0], globalPose[1], globalPose[2]);
WGPS_T_WVIO = WGPS_T_body * WVIO_T_body.inverse();
}
}
updateGlobalPath();
//printf("global time %f \n", globalOptimizationTime.toc());
mPoseMap.unlock();
}
std::chrono::milliseconds dura(2000);
std::this_thread::sleep_for(dura);
}
return;
}

 

首先呢,判断是否有gps数据,整体的算法就是在ceres架构下的优化算法。
所以总体的步骤就是ceres优化的步骤,首先添加优化参数块(AddParameterBlock函数),参数为globalPoseMap中的6维位姿(代码中旋转用四元数表示,所以共7维)。
之后添加CostFunction,通过构建factor重载operator方法实现(具体实现需要学习ceres库)。该部分有两个factor,一个是位姿图优化,另一个则是利用gps进行位置约束。
将factor添加后,进行ceres求解,更新此时gps和vio间的坐标系转换参数,之后再利用updateGlobalPath函数更新位姿。

总而言之,VF的和GPS的融合也是一个优化框架下的松组合,利用GPS的位置约束,使得位姿图优化可以不依赖回环,这是一大优势。

上一篇:c-CUDA和本征成员“已被声明”错误


下一篇:c-特征-将const数组映射到动态向量