1. Math.random() 静态方法
产生的随机数是 0 - 1 之间的一个 double
,即 0 <= random <= 1
。
使用:
for (int i = 0; i < 10; i++) { System.out.println(Math.random());}
结果:
0.3598613895606426 0.2666778145365811 0.25090731064243355 0.011064998061666276 0.600686228175639 0.9084006027629496 0.12700524654847833 0.6084605849069343 0.7290804782514261 0.9923831908303121
实现原理:
When this method is first called, it creates a single new pseudorandom-number generator, exactly as if by the expression new java.util.Random() This new pseudorandom-number generator is used thereafter for all calls to this method and is used nowhere else.
当第一次调用 Math.random()
方法时,自动创建了一个伪随机数生成器,实际上用的是 new java.util.Random()
。当接下来继续调用 Math.random()
方法时,就会使用这个新的伪随机数生成器。
源码如下:
public static double random() { Random rnd = randomNumberGenerator; if (rnd == null) rnd = initRNG(); // 第一次调用,创建一个伪随机数生成器 return rnd.nextDouble();}private static synchronized Random initRNG() { Random rnd = randomNumberGenerator; return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd; // 实际上用的是new java.util.Random()}
This method is properly synchronized to allow correct use by more than one thread. However, if many threads need to generate pseudorandom numbers at a great rate, it may reduce contention for each thread to have its own pseudorandom-number generator.
initRNG()
方法是 synchronized
的,因此在多线程情况下,只有一个线程会负责创建伪随机数生成器(使用当前时间作为种子),其他线程则利用该伪随机数生成器产生随机数。
因此 Math.random()
方法是线程安全的。
什么情况下随机数的生成线程不安全:
- 线程1在第一次调用
random()
时产生一个生成器generator1
,使用当前时间作为种子。 - 线程2在第一次调用
random()
时产生一个生成器generator2
,使用当前时间作为种子。 -
碰巧
generator1
和generator2
使用相同的种子,导致generator1
以后产生的随机数每次都和generator2
以后产生的随机数相同。
什么情况下随机数的生成线程安全: Math.random()
静态方法使用
- 线程1在第一次调用
random()
时产生一个生成器generator1
,使用当前时间作为种子。 - 线程2在第一次调用
random()
时发现已经有一个生成器generator1
,则直接使用生成器generator1
。
public class JavaRandom { public static void main(String args[]) { new MyThread().start(); new MyThread().start(); }}class MyThread extends Thread { public void run() { for (int i = 0; i < 2; i++) { System.out.println(Thread.currentThread().getName() + ": " + Math.random()); } }}
结果:
Thread-1: 0.8043581595645333 Thread-0: 0.9338269554390357 Thread-1: 0.5571569413128877 Thread-0: 0.37484586843392464
2. java.util.Random 工具类
基本算法:linear congruential pseudorandom number generator (LGC) 线性同余法伪随机数生成器缺点:可预测
An attacker will simply compute the seed from the output values observed. This takessignificantly less time than 2^48 in the case of java.util.Random. 从输出中可以很容易计算出种子值。It is shown that you can predict future Random outputs observing only two(!) output values in time roughly 2^16. 因此可以预测出下一个输出的随机数。You should never use an LCG for security-critical purposes.在注重信息安全的应用中,不要使用 LCG 算法生成随机数,请使用 SecureRandom。
使用:
Random random = new Random();for (int i = 0; i < 5; i++) { System.out.println(random.nextInt());}
结果:
-24520987 -96094681 -952622427 300260419 1489256498
Random类默认使用当前系统时钟作为种子:
public Random() { this(seedUniquifier() ^ System.nanoTime());}public Random(long seed) { if (getClass() == Random.class) this.seed = new AtomicLong(initialScramble(seed)); else { // subclass might have overriden setSeed this.seed = new AtomicLong(); setSeed(seed); }}
Random类提供的方法:API
-
nextBoolean()
- 返回均匀分布的true
或者false
nextBytes(byte[] bytes)
-
nextDouble()
- 返回 0.0 到 1.0 之间的均匀分布的double
-
nextFloat()
- 返回 0.0 到 1.0 之间的均匀分布的float
-
nextGaussian()
- 返回 0.0 到 1.0 之间的高斯分布(即正态分布)的double
-
nextInt()
- 返回均匀分布的int
-
nextInt(int n)
- 返回 0 到 n 之间的均匀分布的int
(包括 0,不包括 n) -
nextLong()
- 返回均匀分布的long
-
setSeed(long seed)
- 设置种子
只要种子一样,产生的随机数也一样: 因为种子确定,随机数算法也确定,因此输出是确定的!
Random random1 = new Random(10000);Random random2 = new Random(10000);for (int i = 0; i < 5; i++) { System.out.println(random1.nextInt() + " = " + random2.nextInt());}
结果:
-498702880 = -498702880 -858606152 = -858606152 1942818232 = 1942818232 -1044940345 = -1044940345 1588429001 = 1588429001
3. java.util.concurrent.ThreadLocalRandom 工具类
ThreadLocalRandom
是 JDK 7 之后提供,也是继承至 java.util.Random。
private static final ThreadLocal<ThreadLocalRandom> localRandom = new ThreadLocal<ThreadLocalRandom>() { protected ThreadLocalRandom initialValue() { return new ThreadLocalRandom(); }};
每一个线程有一个独立的随机数生成器,用于并发产生随机数,能够解决多个线程发生的竞争争夺。效率更高!关注公众号Java技术栈回复 java 获取更多 Java 工具类教程。
ThreadLocalRandom
不是直接用 new
实例化,而是第一次使用其静态方法 current()
得到ThreadLocal<ThreadLocalRandom>
实例,然后调用 java.util.Random
类提供的方法获得各种随机数。
使用:
public class JavaRandom { public static void main(String args[]) { new MyThread().start(); new MyThread().start(); }}class MyThread extends Thread { public void run() { for (int i = 0; i < 2; i++) { System.out.println(Thread.currentThread().getName() + ": " + ThreadLocalRandom.current().nextDouble()); } }}
结果:
Thread-0: 0.13267085355389086 Thread-1: 0.1138484950410098 Thread-0: 0.17187774671469858 Thread-1: 0.9305225910262372
4. java.Security.SecureRandom
也是继承至 java.util.Random。
Instances of java.util.Random are not cryptographically secure. Consider instead using SecureRandom to get a cryptographically secure pseudo-random number generator for use by security-sensitive applications.SecureRandom takes Random Data from your os (they can be interval between keystrokes etc - most os collect these data store them in files - /dev/random and /dev/urandom in case of linux/solaris) and uses that as the seed. 操作系统收集了一些随机事件,比如鼠标点击,键盘点击等等,SecureRandom 使用这些随机事件作为种子。
SecureRandom
提供加密的强随机数生成器 (RNG),要求种子必须是不可预知的,产生非确定性输出。SecureRandom
也提供了与实现无关的算法,因此,调用方(应用程序代码)会请求特定的 RNG 算法并将它传回到该算法的 SecureRandom
对象中。
- 如果仅指定算法名称,如下所示:
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
- 如果既指定了算法名称又指定了包提供程序,如下所示:
SecureRandom random = SecureRandom.getInstance("SHA1PRNG", "SUN");
使用:
SecureRandom random1 = SecureRandom.getInstance("SHA1PRNG");SecureRandom random2 = SecureRandom.getInstance("SHA1PRNG");for (int i = 0; i < 5; i++) { System.out.println(random1.nextInt() + " != " + random2.nextInt());}
结果:
704046703 != 2117229935 60819811 != 107252259 425075610 != -295395347 682299589 != -1637998900 -1147654329 != 1418666937
5. 随机字符串
可以使用 Apache Commons-Lang 包中的 RandomStringUtils
类。Maven 依赖如下:
<dependency> <groupId>commons-lang</groupId> <artifactId>commons-lang</artifactId> <version>2.6</version></dependency>
示例:
public class RandomStringDemo { public static void main(String[] args) { // Creates a 64 chars length random string of number. String result = RandomStringUtils.random(64, false, true); System.out.println("random = " + result); // Creates a 64 chars length of random alphabetic string. result = RandomStringUtils.randomAlphabetic(64); System.out.println("random = " + result); // Creates a 32 chars length of random ascii string. result = RandomStringUtils.randomAscii(32); System.out.println("random = " + result); // Creates a 32 chars length of string from the defined array of // characters including numeric and alphabetic characters. result = RandomStringUtils.random(32, 0, 20, true, true, "qw32rfHIJk9iQ8Ud7h0X".toCharArray()); System.out.println("random = " + result); }}
RandomStringUtils
类的实现上也是依赖了 java.util.Random
工具类:
RandomStringUtils 类的定义
参考:
- http://yangzb.iteye.com/blog/325264
- http://*.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
原作者:专职跑龙套
原文链接:Java 随机数 Random VS SecureRandom
原出处:简书
侵删