原题链接
先随便找一棵最小生成树,然后贪心的从大到小选择边,使其没有贡献。
显然固定生成树最长边的一个端点安装卫星频道后,从大到小选择边的一个端点作为卫星频道即可将该边的贡献去除。
所以最后的答案就是最小生成树上第\(m\)长的边。
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
const int N = 510;
struct cod {
int x, y;
};
cod a[N];
int n;
double eg[N][N], dis[N];
bool v[N];
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline double minn(double x, double y)
{
return x < y ? x : y;
}
void prim()
{
int i, j, x;
memset(dis, 65, sizeof(dis));
memset(v, 0, sizeof(v));
dis[1] = 0;
for (i = 1; i <= n; i++)
{
x = 0;
for (j = 1; j <= n; j++)
if (!v[j] && (!x || dis[j] < dis[x]))
x = j;
if (!x)
break;
v[x] = 1;
for (j = 1; j <= n; j++)
if (!v[j])
dis[j] = minn(dis[j], eg[x][j]);
}
}
int main()
{
int i, j, m, t;
t = re();
while (t--)
{
m = re();
n = re();
for (i = 1; i <= n; i++)
{
a[i].x = re();
a[i].y = re();
}
for (i = 1; i < n; i++)
for (j = i + 1; j <= n; j++)
eg[j][i] = eg[i][j] = sqrt(1.0 * (a[i].x - a[j].x) * (a[i].x - a[j].x) + 1.0 * (a[i].y - a[j].y) * (a[i].y - a[j].y));
prim();
sort(dis + 1, dis + n + 1);
printf("%.2f\n", dis[n - m + 1]);
}
return 0;
}