# -*- coding=utf-8 -*-
#!/usr/bin/python
import sys
import os
import shutil
import numpy as np
import json
import xml.etree.ElementTree as ET
# 检测框的ID起始值
START_BOUNDING_BOX_ID = 1
# 类别列表无必要预先创建,程序中会根据所有图像中包含的ID来创建并更新
# If necessary, pre-define category and its id
# PRE_DEFINE_CATEGORIES = {"aeroplane": 1, "bicycle": 2, "bird": 3, "boat": 4,
# "bottle":5, "bus": 6, "car": 7, "cat": 8, "chair": 9,
# "cow": 10, "diningtable": 11, "dog": 12, "horse": 13,
# "motorbike": 14, "person": 15, "pottedplant": 16,
# "sheep": 17, "sofa": 18, "train": 19, "tvmonitor": 20}
def get(root, name):
vars = root.findall(name)
return vars
def get_and_check(root, name, length):
vars = root.findall(name)
if len(vars) == 0:
raise NotImplementedError('Can not find %s in %s.'%(name, root.tag))
if length > 0 and len(vars) != length:
raise NotImplementedError('The size of %s is supposed to be %d, but is %d.'%(name, length, len(vars)))
if length == 1:
vars = vars[0]
return vars
# 得到图片唯一标识号
def get_filename_as_int(filename):
try:
filename = os.path.splitext(filename)[0]
return int(filename)
except:
raise NotImplementedError('Filename %s is supposed to be an integer.'%(filename))
def convert(xml_list, xml_dir, json_file):
'''
:param xml_list: 需要转换的XML文件列表
:param xml_dir: XML的存储文件夹
:param json_file: 导出json文件的路径
:return: None
'''
list_fp = xml_list
# 标注基本结构
json_dict = {"images":[],
"type": "instances",
"annotations": [],
"categories": []}
categories = PRE_DEFINE_CATEGORIES
bnd_id = START_BOUNDING_BOX_ID
for num, line in enumerate(list_fp):
line = line.strip()
print("buddy~ Processing {}".format(line))
# 解析XML
xml_f = os.path.join(xml_dir, line)
tree = ET.parse(xml_f)
root = tree.getroot()
path = get(root, 'path')
filename = line[:-4] + '.jpg'
"""
# 取出图片名字
if len(path) == 1:
filename = os.path.basename(path[0].text)
elif len(path) == 0:
filename = get_and_check(root, 'filename', 1).text
else:
raise NotImplementedError('%d paths found in %s'%(len(path), line))
"""
## The filename must be a number
##image_id = get_filename_as_int(filename) # 图片ID
image_id = num + 1
size = get_and_check(root, 'size', 1)
# 图片的基本信息
width = int(get_and_check(size, 'width', 1).text)
height = int(get_and_check(size, 'height', 1).text)
image = {'file_name': filename,
'height': height,
'width': width,
'id':image_id}
json_dict['images'].append(image)
## Cruuently we do not support segmentation
# segmented = get_and_check(root, 'segmented', 1).text
# assert segmented == '0'
# 处理每个标注的检测框
for obj in get(root, 'object'):
# 取出检测框类别名称
category = get_and_check(obj, 'name', 1).text
# 更新类别ID字典
if category not in categories:
new_id = len(categories)
categories[category] = new_id
category_id = categories[category]
bndbox = get_and_check(obj, 'bndbox', 1)
xmin = int(get_and_check(bndbox, 'xmin', 1).text) - 1
ymin = int(get_and_check(bndbox, 'ymin', 1).text) - 1
xmax = int(get_and_check(bndbox, 'xmax', 1).text)
ymax = int(get_and_check(bndbox, 'ymax', 1).text)
assert(xmax > xmin)
assert(ymax > ymin)
o_width = abs(xmax - xmin)
o_height = abs(ymax - ymin)
annotation = dict()
annotation['area'] = o_width*o_height
annotation['iscrowd'] = 0
annotation['image_id'] = image_id
annotation['bbox'] = [xmin, ymin, o_width, o_height]
annotation['category_id'] = category_id
annotation['id'] = bnd_id
annotation['ignore'] = 0
# 设置分割数据,点的顺序为逆时针方向
annotation['segmentation'] = [[xmin,ymin,xmin,ymax,xmax,ymax,xmax,ymin]]
json_dict['annotations'].append(annotation)
bnd_id = bnd_id + 1
# 写入类别ID字典
for cate, cid in categories.items():
cat = {'supercategory': cate, 'id': cid, 'name': cate}
json_dict['categories'].append(cat)
# 导出到json
json_fp = open(json_file, 'w')
json_str = json.dumps(json_dict, indent=4)
json_fp.write(json_str)
json_fp.close()
if __name__ == '__main__':
root_path = os.getcwd()
#anno_file = "test_annotations"
anno_file = "train_annotations"
xml_dir = os.path.join(root_path, anno_file)
xml_labels = os.listdir(os.path.join(root_path, anno_file))
np.random.shuffle(xml_labels)
#split_point = int(len(xml_labels)/10)
xml_list = xml_labels
json_file = './instances_train2017.json'
convert(xml_list, xml_dir, json_file)
"""
# validation data
xml_list = xml_labels[0:split_point]
json_file = './instances_val2014.json'
convert(xml_list, xml_dir, json_file)
for xml_file in xml_list:
img_name = xml_file[:-4] + '.jpg'
shutil.copy(os.path.join(root_path, 'JPEGImages', img_name),
os.path.join(root_path, 'val2014', img_name))
# train data
xml_list = xml_labels[split_point:]
json_file = './instances_train2014.json'
convert(xml_list, xml_dir, json_file)
for xml_file in xml_list:
img_name = xml_file[:-4] + '.jpg'
shutil.copy(os.path.join(root_path, 'JPEGImages', img_name),
os.path.join(root_path, 'train2014', img_name))
"""