2142: 礼物
Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 1294 Solved: 534
[Submit][Status][Discuss]
Description
一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P后的结果。
Input
输入的第一行包含一个正整数P,表示模;第二行包含两个整整数n和m,分别表示小E从商店购买的礼物数和接受礼物的人数;以下m行每行仅包含一个正整数wi,表示小E要送给第i个人的礼物数量。
Output
若不存在可行方案,则输出“Impossible”,否则输出一个整数,表示模P后的方案数。
对于100%的数据,1≤n≤109,1≤m≤5,1≤pi^ci≤10^5。
会Lucas定理的P不是质数版本后这就是模板题啊
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=;
inline ll read(){
char c=getchar();ll x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
ll MOD,n,m,w[N];
ll Pow(ll a,ll b,ll P){
ll ans=;
for(;b;b>>=,a=a*a%P)
if(b&) ans=ans*a%P;
return ans;
}
void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
if(b==) d=a,x=,y=;
else exgcd(b,a%b,d,y,x),y-=(a/b)*x;
}
ll Inv(ll a,ll n){
ll d,x,y;
exgcd(a,n,d,x,y);
return d==?(x+n)%n:-;
}
ll Fac(ll n,ll p,ll pr){
if(n==) return ;
ll re=;
for(ll i=;i<=pr;i++) if(i%p) re=re*i%pr;
re=Pow(re,n/pr,pr);
ll r=n%pr;
for(ll i=;i<=r;i++) if(i%p) re=re*i%pr;
return re*Fac(n/p,p,pr)%pr; }
ll C(ll n,ll m,ll p,ll pr){
if(n<m) return ;
ll x=Fac(n,p,pr),y=Fac(m,p,pr),z=Fac(n-m,p,pr);
ll c=;
for(int i=n;i;i/=p) c+=i/p;
for(int i=m;i;i/=p) c-=i/p;
for(int i=n-m;i;i/=p) c-=i/p;
ll a=x*Inv(y,pr)%pr*Inv(z,pr)%pr*Pow(p,c,pr)%pr;
return a*(MOD/pr)%MOD*Inv(MOD/pr,pr)%MOD;
}
ll Lucas(ll n,ll m){
ll x=MOD,re=;
for(ll i=;i<=x;i++) if(x%i==){
ll pr=;
while(x%i==) x/=i,pr*=i;
re=(re+C(n,m,i,pr))%MOD;
}
return re;
}
int main(){
//freopen("in","r",stdin);
MOD=read();n=read();m=read();
ll sum=;
for(int i=;i<=m;i++) w[i]=read(),sum+=w[i];
if(sum>n){puts("Impossible");return ;}
ll ans=;
for(int i=;i<=m;i++) ans=ans*Lucas(n,w[i])%MOD,n-=w[i];//,printf("hi %d %d\n",ans,n);
printf("%lld",ans);
}