题目
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAfEAAAAeCAYAAAA8VyeeAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAc7SURBVHhe7ZyNbtxGDITjvrjrJ089qSeZEuSS1Ep3J5cfsDgtf2a4ew6EJG3efn7yYxiGYRiG2/HX1+cwDMMwDDdjXuLDMAzDcFPmJT4MwzAMN2Ve4sMwDMNwU+YlPgzDMAw3ZV7iwzAMw3BT5iU+DMMwDDdlXuLDMAzDcFNe8iX+9vb29XQM9B/RiPoqekf8jnCFz6NmH/y7rtx/VLOKV9eKLK9YXW9lVGqqdLR2Z8v6vfyOZ6V3lx2PR8wHuj7PvM+reMl/sQ0XyrGyy/Xq9EhRf6dP4xGoz+qiWVZYTfWJ9Ow5KnNlNWfyaL+z2Znf6935jjqzHJ272pfVVXSOzuix0kIOML87W9bv5aMejVeeu1R7Ox6oBdX5WF8l06rmK8+WTP/ZvPxL3BLlOnGNdfUAcl0iLbLyU2xdtgeZdtX7DK72etRZjvhEPYhbWOflIrJ5spk7XkT1Kv3desvqXuzZ7Hm1J6v18PS4X/VHOcQtVs9+kkgzY9W38sAzsHliNVc+IMsrZ2ixxn6SMzyeRekl7h0AMeWMA1pN4Pl6Xp24xrp6Hp3aiEwDeQvqbZ+nw5inYVnNsIs325lEZyea8+5ilffm7pwn8vM0qjGwmsHmsr0ly1t29bp+Cnvx6aG6nk+1DzCmOp4m8HRR59Uz5vUQ9VM8b4vnqdi8enAur9+La6/CukjLg7WR5oqsT+dRvNk6Mz+S5d+JY2jvAngYXV5dF2rZ56vhObk6sN5qcFVAXXbWnbuxfXZp7q54d8gYl/0+NIdFbN9ZWM3K974DtO2ZrwZ+0VrBvO3hqmLvWJ8joK99tkf9Ede9zsdnzQOribzqW7SWeP3c29oz4BnUp4rOpysC9d6yWC3dR3HdKxqDl+5t7bP5+Pj4evJZvsT1YHcg+yGI4DntWa2e1eRe+3VVsJod0Esfzpf57vjtUJntKGdqe1qRNuI799mdGV52HQW9Z92ZAs1oRfAcXg+Wh569ehbUsY/PUW8UBxrHM/d81rxHlgfqj0/sd1idR0Fdt1afo94oTpDTdTbqj0/suxztu5pD/3W6PUz2BR2le2GYQdcuqmM1zzizp+GdGTEu3WuvnQ/YPoAa3XdRPat9BZkf9vbcJIoT6llNsMqdTdWD37GujKim0gv0HnRFeLVcHohXZ1HQ42lGPgA99OIz94T9Nm45OrcSzeppY484c1HvEagLoF09l9by2faq7plAz94B9p6PF2c/c1brmWS/87Zs/S9mvIQr4OW+InY23oNdK5D3zuf9QCHGpXugflxE685CfamvnmeT+VX92a9Qz2qol83tAB0upeqh/VweXh1WlvPQe+Ba4dVzWeCrcTsTVwR6kVcNxjIqNcSb3YtF8BzWM5qV2sipD547vlXO0PXO8SrwbI+6zx26L3Bw6D9ss3vgxbroD0KkFfl04hpTT4KcrfG0wZGcjXt1UU3WW9GyZHlLxdPS9VAqfiv9znxXaANbt9p7mpFPFPfo1IKuZ6a/yu/kgOZZ7/VpvVeX9WoMew9bU93zuaNr9SIqdbYm2wPEAOLMa50XA16NkuUJc1mNh9ZXdECWt9C70hO9wN/f37+efF7qJU5WWlFO43gG2Hv1trai59WAbq4aAxrnMz4J99rraXkxJctbKp4eXR9S9fPi1VrudzRWRH4ej5phRWc+7LtY7Y4fYTzLK4gBjWtd9Aw8PRLldjR0H+VWepasNvLgM7D9Xtz2VZ49vFqPLE8if8D9SqvqQ1Z+EXyRZy9u5dJ/sQ2DYz0K+uGyvAu7ah7q2mVBrPNDEBGd7/8O7kTv3d639528MpiXy+6j+DPgz2Nneeg5dGVAr1KHGuvtxV6B7Dw886Nmhw+9ONtZ90ltuyrQjzNFZHlqVH2vovPyJsvfiXsHZ7nNeTKs6V7M6jKjXDdOKn0rjaM5pVLHGluLvcVqRfram/kT29PViGaJ2PHTWqI9kZbt83xQk/krtn7V7+Wi+s4c1dqsbpU/OmdX08YqNaTrRY7kbLyrgRioaFfo+nvYuiOaVS9Q1ahoogZ0Z6poe6z8zuLb/IttEVm9l7exo/Nk3iSrYx6foKJJtLfTdyWvNMsRjszP706JNKx+5ledp1K3U7MzZyeX+ZCo7qw5lJWXparBXsS8nBevEPVUtaJZPFZeHawfWOlmOTsX9zYOvNgrcekfp3fBZWF5rHJH8b4cL9blilkB5sKi/moBfPIsnb6r2b3fZ3N0fvRxefA70LzdeyCv393bx3+/x+qeXqv8L5+/f21/g7zOGfVzzihPuI/8svv43deg28N67bN7gnm5PNjDvO4Zwyd1tVbjVdhroVa2KlRq4VdZhJo2rjCn/l4fawBzQOOEuZflc8BhGL4Zny++b/05DMO/vOQfpw/DsA9+R/vz/c8v7++2H4bh89fFvMSHYRiG4Z681N+JD8MwDMNQZ17iwzAMw3BT5iU+DMMwDDdlXuLDMAzDcEt+/PgHkgbXfHdfj74AAAAASUVORK5CYII=" alt="" />
解决代码及点评
/*
功能:打印所有不超过 n( n<256)的其平方具有对称性的数(也称回文数) */ #include<stdio.h>
#include<stdlib.h> int judgReOrd(int);
int getBit(int); //返回整数值的位数 void main(){
for (int i = 0; i < 256; i++)
{
int flag = judgReOrd(i*i); //进入函数判断是否为回文数 1为回文,0为非回文
if (flag == 1)
printf("%d * %d = %d \n",i,i,i*i);
}
system("pause");
} int judgReOrd(int n){
int a[10] = { 0 };
int t = getBit(n);
for (int i = 0; i < t; i++){ //将每一位数传给数组a a[i] = n % 10;
n /= 10;
}
/*for (int i = 0; i < t; i++){ printf("%d",a[i]);
}*/ int flag = 1; //标示符flag 1位回文
for (int i = 0; i<t / 2; i++){ //利用数组下标判断是否为回文数 if (a[i] != a[t-1-i]){
flag = 0;
break;
}
}
return flag;
} int getBit(int n){
int x = 0;
while (n > 0){
x++;
n /= 10;
}
return x;
}
代码编译以及运行
由于资源上传太多,资源频道经常被锁定无法上传资源,同学们可以打开VS2013自己创建工程,步骤如下:
1)新建工程
2)选择工程
3)创建完工程如下图:
4)增加文件,右键点击项目
5)在弹出菜单里做以下选择
6)添加文件
7)拷贝代码与运行
程序运行结果
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqUAAAG6CAYAAAAxsD/hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADBYSURBVHhe7d0NvF1lfSf6ZyfhGFQU0hqSkM697bS+jLyjqCCKvAU1+FKtkWoFxY8znfZWUYtVpx3nY33BKkrrTKZzRVOqUm97aa0vWAEFK9hTFZAXh7H1zvVOAyGHl9oInkDCuetZe6+TtVfW2nvt13WSfL/x797redbzstfJx/xc+5x9WguJ0HHjjTeGD37wg50jAACYjL/+67/uPGtbDKUveclLQqvVCi847fRwyqkbwurVh6cnAADAuOyc/0m447abwicvuyzEGJqF0zSUxkB62GGrwm+8+aLwUJhJOwAAYFLWPmEmvP+9vxceeOD+NJimofSlL31pePd//EB4qPWYzmkAADBZaw85KFz0tv8jfP7znw+tc845Z+E5zzklnHT2L3e6AQBgOrb94Obwmc9c3g6l//G9fxAeXDio0wUAANPx1J9bHd74+l9th9JPfOqz4c5/mut0AQDAdDx1/ZPSULqscxxaSimllFJKTbkyi3dKf7D13k4TAABMx5OP+Nnut+//4a77Ol0AADAdv7TuZ7pD6T/efX+nCwBg//DgjgfDD/7H/wwPPLCj0zJ5hx12SHjyU34+PO6Qx6XH9tDeQ5VfXLtqsFB6zeev6DwbzC885ajwvz/534Rlyxa/fRUAYCpu/NubwrFH/+uw+vCf6bRM3vZ77gu33PrDcNIpx6fH9tDeQ5W9QukPtz3Q6SrXevCezrNyy1qt0FrWCvGXlsZfGRUr+urV14bnbnhZOPjgx6bHAADTcu1XbwwbX/zccP+/PNRpmbxVT3hs+OKXvhlOP+uk9Nge2nuo8q/XHFb46fsYKnvUMcce27OOOuaYcORRR4ejjj46HJ08z9pTSUAtm3PJ1b3Xhv/8rg+Hb9xb0jfpyq+9VPZR1j/Rmgvf+KO3hr/4flmfUkopNVylN86mWGXrLdU9ZD8Cv+e401f2J+2Lp+cfO2OyP53jWHVfc2bxTun/3P7jTlO5Zzx5Tbju+jvCH1//g7BsxaNh2UELYdnM7rA8qYtfcUZYteqwzpltp7/1c+HaSzaFD3740nDKhpeFxz7u8Z2ezPZw/aXvD1+9u3OYOiG85oO/Fv5N52iP28Kf/85VYfXbLgrPf1KnKbX3HMe+7mPhV/aeoJ65q8MffeTmcPRe64xTxWvJrx2msY8KxWuQHn8pbGv3dq5v/a9H9de0THv89jNH+BqWqtpvFPsuC7ekz9eFs3LnfP9zbwmfubn9PLX2xeHCN58ZfrZzGL7/p+Hdl393779zpdescwDAVF3zNzeEc8553tTvEH7hC98IZ2w4OT2uu4cbr7su3PR3s52jasc/+1nhpFNP7RyVq9zDjx9MjuK72XvCYNtC8qcVvnV93MPfd9riWieGk553arjx+uvDTbN79pbu4fnPT98hb+fK9jvkCwsxaLYPVx36uK49VPn51U8c7E5ptvW1hx8c1q15bFIrw7r4fPXBnZ5qpfPFSvqOfd2l4f0Xd+p1IXzmd94S/nyvO2VHhxecncSHO+YK7UklQWLD2zvj374x3HP5h4a/y7f6rPBbF78jnLq6pK9WzYVvXFq2/3xVvJb82iPvY4TqWvv28OefbYVzs69Pen3/NPz3nl+Pul/Timr/jSnvG7qq9hu/XpeFe85+d2eva8NXPxJfX9af/H3P+mK95azwpMVxbwnvvjp5rWuL+02uWRJI12TXYNS/k0oppUauGHaWL1s2tYrrDbOHGEg/99n/0rfieWXj81W1h/bzZYXHeFdzeXpnMwbSv/jcHy9WPP7WN9qBtLt9tj1uWTZ/nCtZNztOHsv2UFaZeH4qbqRXPTj/cHreYYceFP6f+7eF/z73/4U77/1R+B/3/b9pexQzcva9pE86as9viCqbL9lrspH2ZhfbjjwvfHAx+OTakzr8yONDuPV74b6u9s4cyZ/0OAlUZxx/V7j1ju25c6ZZJa+ppMpfy1Kso8OrLzwrHJ4drz4mHLPu7nDvXJ+vR76tx9d076p3/Yap0v3OfS/cevczwhmnHd4+PvLscPa674Y7kgAdj5OtJJsp+/t7eHjBhX8YPnjh2WHNXvuNQ9aFNUmoT49Xrwlr0mny5yillJpWpZLH+Gxq1Vm3aw+JuItefwaRH1f+py2/hxgUW0lgjftrP8a9tsNk+9+yZeGE5zw7vHLTvw2PPvpoWv/XFZvDd5MAGh+zttgfz0vni0E0DaNZtddL54z/KCayPVRVZjGUtjfaozrnzf7oH8Kugx4KBx28Kxy08pGwIqko3vKN52RfiDX/2/9KH6PS+bKVk/O72tfE4POdcHu8s3bv1eHSiy4O18W7TLE9fDF8LbZ3zZGslx/faWotuydc97HfCp/7/m3hcxf9Vvidj10d7k3P6Rwv1uXh+9nYdL3cceHcS6+7p9Ne1nd1cvy+8JW7Qrj5T5K2znr3Xnfx4jmLa5W9lvzaXfuI6yTX4LrLc2tV7aNz3uJrrVg/VrpG1h6vU749fw3ytT3cc9e6sDpJYtVfj3j9821J5b+maVvVdc3Gd/dX7m2vvfa4FqXXfFu4+/jjwpGL49ckry2EbXOd/SRbufuq93XmK7sm7e12v95jwukvaoWvfDauG/8OfiJse9HrwwviNesaG6v8OrS/ZnvW+/6fJf1/dlvPMUoppcor/Z/p9LZZfD6dWogP8Vl+D/F5/PeiR+Vt+tV/v1fllY3PV/Jf7fNye4iWJ+1peOw8Lk/6YqUhNXk85bTTwjNOek541bm/Hnbv3p3WFZ/++OLz2B7743np3dXO/FnAbIfRdjjNZHuoqkz2z2rXCymr5L/S8xbD6GMeSR4fDgc9pn0HNTdn6mOnXdx5VjV3sul2Z8/29tP4fG04bcMzw8233to53nPu4vHc1eHqm44Ixx61drHv5i23hKM/8vHwobdtCKtbt4Y/e/v/mYSE3w0fim2xXt8Kl789CQCdOZLZOvPFc78c1ryjc95Hfjcce8v7wp/dkfV1z3Ph6RvCuck5L1wXwnGvT9riesl+PvPldeG8bK2PnB+OTOcuey35tfPPk6dha/jKtuPac7zjJSF8eUu4bi72tfcR4nrp/G8IrVu+s2ds5frbw3XXtMJrs/bXJ3vZUnYNuuv7n42v+YU9XkOdr2mv61r4mtXY257jPteiZL/3bm9/82t2nFbakuwjeX7ka7K5Ph5++0V3h8svSYJm/tyK17v69DeEF4YvhA+/Pf6flGeGs06Pfx+7z+l1HVaf/s5w3vHfCVd/bXto3XF5uHzbS8Jvv+aYnmP2nl8ppVSs5L+S4JOEp+W964brrgsfe//7+1Y8r2x8VyX/PqTr5vcQ/81Ig191Rffdd19a0Vt/93cXK8r3lY0vVukeksfsrmYaCrNzktOzsPq8004Pz0yC57mv/c3wwAMPLFY8ju2nnJ4E0k6g3DPXnlpsK1yHqsq0r0Ci7KR8ZeKd0YOyQDrzcJiZ2Zm2Lzz6aPpYqmS+bM7y9iPCmnhn6fAN4a2XvCucdnin76jjwvE33RLu6Dp3a7jq4t8MF70tqYu/G459557zo+PfkAWxpO64Jdy87iXh185Yszi+ddQLkyD57XBb/Ic9uxrZufm53/becNVdIWzbHoNCyTydag/vHB++JqwN3w5/8rYPhK8Xv6ew+Frya+efx0quxws3HNt+fvix4dgk+Mb/F5Dt48yjOue11oTTzn5mZ2g8t2r95LzXbgitr32g/do+9e10TNKx99qduuOzvxn+pPWm8Naua1f29eisXajFr2mv65qeV/iaVX19YhW/Xr2uRazCflevSS5k1tepNGUW2mKtPuPF4fi7vhtuL3wdu+ZPKwmOb/tkCOf95/AHlyT1zrXhq2Vf/z7X4cjXvims/fJ7k6/NXeGF58X/Q9V/jFJKqb2r/b/T6UNP377xxq7vmayqeF5fnfXye4ht8Vmvinbu3JlWdMl737tYUb6vbHy+Ml17SLRDY2yLAXR5epy2db6ntLV8Wfjm17+WvM5vhY9++D8srhkrHsf2G7729WSO5PwYSpMx6bgspKbPYyDNrRnbelQm+2e99KR8ZdIwmgbSneld0hUz7bfvb739jnDrbbenFb+tdD7Z/E9/+tO0r2y+dqWd3W13XBWuaj0jHFX6Qz7HhmNO+Hb7DtJi2xHhRe/8L+HDH4317nB617ji/O3j7rZYSWCKQTb9E/NebEueHPHScFE67556WxrKqubpjFt8fmz41XTcG0Pr8t8Iv/3W94evp3c4231dryW/dv55UlHa1jmOTe3j2BEPuvv2tFWsP/fV8NG3/kb4dOuN7df1zpeGds5N+tI/e9aO9f3P/Eb4k/Bvw4df2wnGi1X29Wiv33Ve19c06a+8rp3+bNxiddqKe+s6bp+TnrdYxbbifpP+bfeEucX+7WFuWwhr1+z9fzZiRcmzQnt7jcXjO24ONx2R+/u7+uxw9glbw/duKwbHZFzP69BeL0qOao9RSilVqOR/OtOfdkn/97pHJX74wx/2rVTZ+FwtPs3tIVZy0LsSDz/8cFoXv/+ivSrrS5WN76r0P8nT9h4y8Q5mkhrbgTKtzl3NTqj822u+Fv7+hhu71rvw7b+/+Dy2x/5vXHtt8u9vO9C2Q22n0ufteTOL16GiMrVDaVzgrrt+GN70rzaGN6x9WTjvSb8SXnPoueHVj/+1zgx7tL/vIH4zbPuHnsrmSyv2xT/Z8e1bwtsvuyu8+Lyz0x+uac39TbjkwvflglwrHLnhpSHcfMueIDHI/EcdH07Y+vnw6WtzAeH2q8KXQxIi0rur6W7jhIvnXnt757yk7vj0lvZdtr36vhe+ns2ZXzPZ/9fTc9aE03/7PeHFR2wN92zv9CXV/Vpyaxeex8NsTFrZ8V772B6+/pX2Xc/0uGr97XeHu5Jwk93pnbvtO+Gu0rWT+T7878PfrH1P+MivFQNpu0q/HvFPdlz8mva6rrGS8Tfd8r3FvrlrPxG+vPXEcEx6BzTu7a6wvfP3oWvf/a5Fp7r2e9SLw4tDbkz6d+Glnbut3wtXfHrPPu749B+3w2Z21z6rOH/+9R6+Lqzb+p1wx+Lf2e+FW7+bBN3Dk2ud//vc5zrE9bZtfE94x8YQvnz533T22+faKaWU2qui5UlYKvsJ9XxFjzzySN+KysbnK337PpHfQzuwZUGwvKKyNYsVlY3PV3zN0eK1SJ7HvaUBMumPbe3HeFezs+9ly5PAeUP4/f904eJa73jXh8KzTjk5fczaYv/ff/OG9DW17452gmhnrSycpuvl91BRmcXPKd22o307uMq/+pnHhUMfl7zAZPHdDz8Slq9Ynjw/KOnZHRZ27QoP74o/eR/Crt27wu5HH003ETd3yR9uDme+7NXhcXt9Tum2cO2H3hO+tLVzGB3xsvA7F50dVncOwz1fCR9+/3fCce/6D+H0wztt6bhPhHBebMs/73Qvas+/7ez/Gl5zdKcpdUv4zJv/a0hyQseJ4Q2XviEcGZ+m690Vzu46/qsk+LSdcEFurq6+PXNsv+b3wwe/8E+Lr2X7n/678Mn4rY3RM/5duCQJd3vk9h9ya3ftI+73i2HN4jUovOaufawPLz5nXfjSTesWr+Ptpeu3r0127dc948QQknP2WvvWT4a3Xrbns8rakjV6fj36fE2jyuvaHr9t7Ynhu9/J1s19fRKL1zfRte/Y0OdatPW6ft1rhfzr73odJa8zkb2O/B6jxdeXrpX7+1xxHdKv2d3Zep211na+dpXXDoAyX/7CdeHlLz01/PODnTuMFa6/5uo0aPVz4nNPDs8/48zOUblDHzcT/vLz14UXndP+LNGltIcd80lg69K+gRhvscRn13/1q+Hv/vab7abEs055bnjBWWeF6wrtz07an5+0p5EyDtyTLRcdsnJF1x6qrDnkMd2/ZvSen/S+UH/5p/8tRt3O0d4OOmhF0r08PPLwzsWXF639uZ8PxzzzpHDwY8f3a0a3X/3e8IG7zwkffV0+4I1B8g/+H7zvrvDCP8wFkwlbfC0bto1n7SRIXXjVuvDOdxSC4ARN7OsxqoprsWT3C8DYfemvvx5e8fLTwo8fat9hnIYnPvag8H//5dfCi1/ygvR4Ke3hX36a30PMdfnU1tZKA2q+Pct/SVs6pHNGvNO50D5z8YyYFTsfD/qEg7v3UOXwx88M9uH555z7+rDhl3+1sk4751XhBRtfEc4qtB974slh5cEHl845bB1+1kvCM75zU7i9pG+Umrvt2+GuI9a132aeUmWv5dqh1r4nXHvxJ3PX4XvhM5+YDetOOK6R1zDur8dgVf9aLI39KqWUmlrFt5KXT6+yH/RZintoP4+PsfL5L45pv/UeE2b73HZb+7zOufFPpyH57/Zj5zhrS9/Wj8/L9lBSmcU7pXMPFW/nHkBu/UR483+LvzrrWeGNH39jOKrdOh2jrn3PVeFD770yZO8kH/HS94aLzowf134Aci0AKPja1TeGZxz/1LB27bTePwzh7ru3h+/cdGc47cyT0mN7aO+hypMeu6L77ft7H9rd6QIA2D/8ZMdD4e++dXP46U/nOy2Td/DBK8Ozn3NcePwh7W9dtIfe38L5s49d3h1K7/tpj88ZBQCACfiZg5d1f09p+k0ASimllFJKTbM6Fu+U3j+/909fAQDAJK1a2Wq/fb9x48aFy7ZcURlKZ6+5svMMAAAGd95554U7t+7oHHWLofSC88+tF0pnZ+NPhwMAwGDe9a53hfXr148vlG7evLnTAgDAgWB+fj7Mzc2FFStWhJmZmfTXh+bFzxldWFjo+rzRKPsM0jh+586dtUJp98wAANAAoRQAgMYJpQAANG6gUHrdddftVdN0oK8PALC/qh1KswB26qmnLlY0rWB2oK8PALA/G/rt+2HCWByTH1c8HsSw48al6fUBAJq2fPny9Kfy4+Oohgqlwway/N3FbI6sbRDDrp+tW6xBDTMGAGB/EoNo/IioZz/72enjqMF06Dulg4bJqgA4bDAcJszGMWU1jGHHAQDs62IAjfW0pz0trFy5MrzpTW8aOZgOHEqHvUtYFQAHDYbDrh9lAbhYgxj0fACA/UkWSI888sjw9Kc/PZxxxhnhuOOOC5deeulIwXSoO6XD3iXMAl0+iA4T8oZdP1u3WIMaZgwAwP4ghs7zzz8/vOpVrwqvfOUrwzOf+cw0nD7nOc8J119//V6/9amugUeNEsiKIbB4XMco649D0+sDADRp9+7dYcuWLeH3fu/3wqtf/eqwYcOG8LznPS+ceOKJ4fnPf3549NFHO2cOpnYozcJY9pZ3/q7nNBzo6wMALAUxlD788MNpPfLII4uPWcX+YbQ2bty4cNmWK8L98wudpm6z11wZZmdnw+bNmzstAAAcCObn58Pc3FxYsWJF+tFPxbfmW61WWFhYSB/z4nGsOH7nzp1h/fr14c6tOzq93VatbIULzj93+J++BwCAcRFKAQBonFAKAEDjhFIAABrnB50AACgVf1DptttuCz/60Y/Cfffd12ndo+oHnQ499NDwi7/4i+kPONX9QSehFACAUjGUfvGLX0x/v/2qVas6rSENolHsjx9LurDwaNqWfVzUP//zj8MPf/gP4ZRTTpnsT99nn9HZlAN9fQCAaYkfCZUF0hg8d+3aHR7ZtSsJn4+Ehx6aDw8++GDY8ZMHw49/vCPM3Xtf+F//dFf6W5+23bMtHVPXwKFUIBVIAYADSwyjseJva0pr96Odu6KPhJ07H07vhsb66U/nF/sGVTuUxjA2aiArzjHInIOcOwlNrw8A0KR2KN0TTHcn4XPX7l1h165d4ZEknMaAupD0ZwF2ULVDafx1mqP+Ss3ir+qM6s45jvWzdYtVxzjWBwCg3NQ+EqoqAA4SDEeVBctiAQDQrKmF0qoAOM1gmAXgYgEA0KyphdIoC4D5IDrNUJitWywAAJo11VBaDIFCIQDAviN+1NPMzEx4zGNmwsqVjwlPOOSQ8MQnPiEcdtihYdWqw8LjH/+4zpmDqx1Ki291F48n7UBfHwCgacuWLQsbzjozvOXNbw4feP/7wqUfuyR8/I8uDX955V+E793y3SSoruycOTi/0QkAgFLxNzZ96lOfCq973evSj3latmx5Ekh/K5x88snh0MMO65wVwuMf//hwyCGHhMMO+9mwdetd4YlPPCTc+K1vhl955a9M9jc6AQBw4ImfT3rJRz8WfvkVrwinnvqCcOKJzw4nnPDM8Eu/9JTwpCetSUPssIRSAABqmeTb90IpAAC1Pf3pTw/Pe97zwnNOOmmxjjzqqLDuiCM6ZwxHKAUAoBZv3wMA0Dhv3wMAsCRs2LAhnHPOOeGs5DGrE5/1rPDzv/ALnTOGM1AozT6bs6nP6Gx6/bylsAcAgGmKb9+/9W1vD6efcUY44YRnhKc97enhyU9+ajjiiJ8LT3jCYdN5+z4LYPnfwjTNUNb0+nnCKABwINq9e3d4+OGHw86dDycBdGf4lx07wo9//C/hgQf+Odx//wPhJz95sHPm4Kb69n0Mc/lAVzzeFwikAADjVzuU5u9QDit/hzMLd3XnHMf62brFqis7d9R9AADQbag7pcOEs6oAWNXeyzDrR1mwLVYdw64JAEB/A4fSUQNhUVV7lVHCYRxbVoMojhl0PAAAexsolGYBbJhAGOXHZ3MMEupGXT9bt1h1VI2pOx4AgGq1Q2kxEMbjQQJlVBbo6oa6cawPAMBwFhYW0oofCxVrYSF53N1+3q7d4dHYltQwhnr7vskwuBTCaH79pvcCADBpMYzuTgLorl270o+Fis/bx4+0a/euxb547jBaGzduXLhsyxXh/vnyCWavuTLMzs6GzZs3d1oAADgQxA/D/6u/+qvw3Oc+NxxyyCFpEI13RGPujOFzx44dadtC/JPeLW3fSX3wwQfDP/7jD8KZZ54Zdu7cGdavXx/u3LqjM2u3VStb4YLzzxVKAQAoF0PpzTffHH70ox+F++6/r9Pa36FPPDSsXr06HHPMMUIpAACjiaF0bm4urFixIszMzIRly7q/87PVaqV3TONjXjyOFcfXDaUDf08pAACMm1AKAEDjhFIAABonlAIA0LiBQmn2GaFZTduBvj4AwP6qdijNQlj+tzBNM5gd6OsDAOzPaofSfBgbVgxx+SBXPO5lHOsDALA0TfV7SvN3GLMwOs2gma1bLAAAmjXwh+fnQ9wggbJf+Ks717Drj0PZa5j2HgAApmVJf3h+DGFZEBvkLmN+XF5Ve5X8+YOsH8Xzy6qu4l4H2TcAANWm+vZ9FgBHCZajyNYtFgAAzaodSge9q1imGAIHCYXjWH8csj0IswAA41M7lGYhLB8OpxnMml4/ytYFAGC8Bv5BJwAADgxL+gedAABg3IRSAAAaJ5QCANA4oRQAgMYJpQAANE4oBQCgcUOF0n6f19n053nuq/uL7fmq0qsPAGBfNHAo7ReImg5M++r+svb4CwHyvyigqOn9AwBMQu1QGsNQr0DUr7+O4hyDzNnv3EHmmoRR1296/wAAk1Q7lObv4JXp119H/g5hFsDqztlv/X79dWT7KlYdo+6vXz8AwL5syfygU1XAGyT4TVoWDIs1btnrncTcAABL0ZIJpVUBb1LBbxhZQC7WOGXzCaQAwIFkyYTSKB/IslA27tA3imxfxRoXgRQAOFAtqVBaDHnjDn1LWTGQxuOlFMgBACaptXHjxoXLtlwR7p9f6DR1m73myjA7Oxs2bdrUaemWD1FlphUq+62/r++v6f0DAAee+fn5MDc3F1asWBFmZmbCsmXd9zNbrVZYWFhIH/Picaw4fufOnWH9+vXhzq07Or3dVq1shQvOP7d+KN28eXOnBQCAA8E0Q+mSevseAIADk1AKAEDjhFIAABonlAIA0DihFACAxgmlAAA0bqCPhCp+VmbxMzL79U/aUt9fXraX/B4G2V/ZeACAcVqSHwmVD0FZEMqHqH79k7bU95dXtu4g+2tq3wAAk7Kk3r6PYSsfuIrH+4NRX8/+dj0AAKLaoTR/B69Mv/468ncIs/BVd85+6/frryPbV7Hqys7ttY9e89UZDwCwLxrqTmm/cDRMeIpjygJZVXsv/dbv118lnl9WdfRbM99edu6wewYA2BcMHEonHfiKqtqrTGp/URxbVoMojsmeZ4/5fZXNXTUeAGBfNlAoLQtOef36+8mPz+YYJHRNen/ZvopVR9WYsvFVbfnKlJ0LALCvqR1Ki4EuHucDY7/+OsoCV/64l37r9+sHAKA5Q7193yvMNR32lvr+ovz62fOysFwVyMvGAwDsywb68HwAAA4cS/LD8wEAYFKEUgAAGieUAgDQOKEUAIDGCaUAADROKAUAoHEDfSRU8TMxyz5HM39O1edsTspS319UtX5x73lV5zWxfwDgwLEkPxIqC0MxCGVhqBikys6ZlqW+v6jO+llfWX/T+wcAmJSxvX2fD0zDinNk80TF41GMY3+jGHX9pvcPADBJtUNpDEOTDkTZ/PkwWnfNaewv21exxmEa+wcAWKqG+jWjWRDLh6iycDZIyOoX7oaZa5z7G9Wg6xdfQ9P7BwAOPEv614yWBb682N4rSFXJj8uraq8yqf1F8fyyGkSd9bP2stcwyv4BAJaqgUJpr7A0Dvn5hwlek95ftq9ijdOkXwMAwFJUO5QWw1I8HiQw1lEMecXjXqaxPwAAJmOot+/Lwl5ZGKwbKMdpqe5v1PWb3j8AwCQN9YNOAADs/5b0DzoBAMC4CaUAADROKAUAoHFCKQAAjRNKAQBonFAKAEDjhgql2edkFmWfoZmvMlXt09JrX8UqU9U+Lb32Vay8Xn1Rsb/snKiqHQBgWAOH0n5BJX6ge1ZR8fymA82Buv9if5Sfq9/4TPEYAGAcaofSGEYGCSRlYWbUQFOcY5A5Bzk3Kp476PhxG3X/gyqOH3R9AIBB1A6l+btn/ZSFl0HGV8nfvcvWqDvnIOtPav/ZvotVxzT3P+p4AIBBTewHncYdYKoCXFX7qCYRwLJgV6xJ6DVvdr16nTOpfQEAlBl7KJ1EQIyqAlxV+7Amtf8oC9DFGqd+82X9Vdds3PsBAKhjIndKxxkS8/KBKltjEiFqUvvP9l2scauas18gzUxiTwAAvYw9lE4y0MS58/MXj8dhkvufhqr9FwNpPC4L9Pv66wcA9k2tjRs3Lly25Ypw//xCp6nb7DVXhtnZ2bBp06ZOS7d8iOkVcsr6ommFoDrrH+j7X8qvHwCYvvn5+TA3NxdWrFgRZmZmwrJl3fczW61WWFhYSB/z4nGsOH7nzp1h/fr14c6tOzq93VatbIULzj+3fijdvHlzpwUAgAPBNEPpRL6nFAAABiGUAgDQOKEUAIDGCaUAADROKAUAoHFCKQAAjRsqlFZ9ZmVm1P5J21/3H9vzVTRqf6ZXHwDAMAYOpf0Cyaj9k7a/7j9rjx9mX/aB96P2Z8raAABGVTuUxjDSK5CM2l9HcY5B5ux37qj9kzbq+vmwOYymXz8AsH+rHUr7hZpR++vIxucDUt05+60/an8d2b6LVcek9zfp+QEAetlnftCpKsANEuyalgW7Yo1bdj3K5s5fr6q1+/UDAIzbPhNKqwJcVftSlAXCYo1TNl/VNclfr7K1+40HAJiEfSaURvnA1CtYLVXZvos1LqMGSoEUAGjKPhVKiyGueHwgKwbKeJwP7MXjon7jAQAmqbVx48aFy7ZcEe6fX+g0dZu95sowOzsbNm3a1Gnplg8xZer2T9qo+9vX9x8Vz+nVl1kqrx8AmL75+fkwNzcXVqxYEWZmZsKyZd33M1utVlhYWEgf8+JxrDh+586dYf369eHOrTs6vd1WrWyFC84/t34o3bx5c6cFAIADwTRD6T719j0AAPsnoRQAgMYJpQAANE4oBQCgcUIpAACNE0oBAGjcUKG06jMrY3u+qvTqm4aq9fN777XHXn3TUGf9qteQtfebo9c5/cYCAAxq4FDaL6jED1Pv9YHrTQea/XX/eYO8xjK91mj69QMA+6faoTSGkVECyajjo+Icg8w5yLllRh0/qrrrV52TtfcKo1Gv8XXWBwAYRu1Q2u/u2qj9dWTj8wGp7pz91h+1v45s38Wqo8762VzD7rPX+DrrAwAMayI/6DRqOCpTFeCq2kcxif1HWbAr1jjU3XN2vYrXbFKvGQCgjrGH0kmFm6oAV9U+rEmGsywMFmucinMW589fr7K1+40HAJiEsYbSLMBMItBF+fl7BathTXr/2b6LNQ5Vc9adf9TxAACjGFsoLQa6eDzOwBiVBaZxhaZp7B8AgHKtjRs3Lly25Ypw//xCp6nb7DVXhtnZ2bBp06ZOS7d8iCtTt3/SRt3fUt9/XvHcqtdQtfey85p+/QDA9M3Pz4e5ubmwYsWKMDMzE5Yt676f2Wq1wsLCQvqYF49jxfE7d+4M69evD3du3dHp7bZqZStccP659UPp5s2bOy0AABwIphlKx/6DTgAAMCihFACAxgmlAAA0TigFAKBxQikAAI0TSgEAaNxAHwnV73Muyz7LMn9O3c/JnJR9ff952V567S8aZP/9xueVrQ8A7F+W5EdC5UNIFkTyIabYXzyn3/hJ67d+sb94Tr/x01S27qj77zc+r6wNAGAUE3v7fhLBJc6Zn7d4PE6TmndUdfc16v6rxi/V6wIA7Ntqh9L83bN+yoLLIOOr5O/eZWvUnXOQ9Se1/2zfxaorO7ffPnrNWWe9qnPqrg8AMKih7pTWCSe9+oYJN3FMWViqau+lzvrj3n8Uzy+rOgZds3he/niY1z/sawYAqGPgUNovnGT9VYYNN/H8sjFV7VWa2n8Ux5bVIIpjiuOr5sva8/suO7dqfCb258/pdz4AQB0DhdIsgPQLZP0C3zCBLsqPz+YYJBQ1vf9s38Wqo2pM2fiytrxh+mNbvjJl5wIADKp2KC0GsnhcFgirQkrd8b3Esfn5i8e91F2/ar6645tW93pUGXU8AMAwan9O6aZNmzot3fIhplfIqwpw0wpBddZfyvvPK+6l1x57vb7i3vuNz/SbBwDYP0zzc0oH+vB8AAAOHEvyw/MBAGBShFIAABonlAIA0DihFACAxgmlAAA0TigFAKBxA4XS+PmU+apS1Vd3/KTUXb+qr+74aei3h7L+rK2sr6jfOXXmAACoq3YozQJI/KD07MPSy0JJVVCpO35S9vX95/Vbt9frqrP/YeYHABjF2N6+j0Fl0mGluMY41xznXJPUb4+jvoZJzw8AUKZ2KM3fYSszan8d2fgYjLJwVHfOfuuP2l9Htu9i1ZWdW7WPfv39THp+AIAqQ90pnXT4KRPHZOPyqtp7GWb9vGHHx/PLqo5+a/brz9rjedm5eaPODwAwioFD6ajhZNjx8fyyMVXtVZrafxTHltUgimOK43v1F69V2WvoNT7q1w8AMIzWxo0bFy7bckW4f36h09Rt9porw+zsbNi8efNiAOkVyHqdU2d8L8Xxg87X9P7Hqd9eRn0do8wPAOwf5ufnw9zcXFixYkWYmZkJy5Z1389stVphYWEhfcyLx7Hi+J07d4b169eHO7fu6PR2W7WyFS44/9zhfvo+isdZWx2jjo/i2HwIKh73Mur6o45fKoqvAwBgKRjq7fuyMFZsr3vetNXdV93zmlDcZ1FVf919Dzs/AMCwBnr7HgCAA8eSfPseAAAmRSgFAKBxYw2lw3zPYt4g35/Y69xBv89xXOtm+p0z6t5HHQ8AsNQMFEonHXjiT4SPskYcm42vmic7J1+92idtWusAACxlA/+gUwxR+Y9F6qfso4fycxT16svLzivuoc7YqGqdfuvn18uvX7aXqDhXcf5+x0Vl/WXrZnrNBQDQyz7zg04x8OSrqq2XGKjyVdWWF9vK1htEPL84d37eXvLr5c+vau+n7DVGVe2ZrD9bN792/hgAYKkb+SOhegWnfCgqOy/2x/Ze4amsv2pMr7nK1q8rm7PXur2Ujc+e93vMK7bVOQcAYFjTvFM61s8prRuIsvP6hayy+WJbVLZO2fnjlK2diWtV7bHYVzY2Ko4vmy8qjo+yNfopmw8AoJ8lGUo3bdrUaekOVHUUQ1Gv4NUvQGVrDjs+qrPvqj0X18gfl81btp9+Y/L6je9nkHMBAPKW9J3ScYScLIjFefqFsihbL1u7zpi84n77vYZe/fm+/D7y59cdH/U7Lqrqz7dnz/vNBQDQyz4VSuNxlarwFBX7yuatOi72Zarai+J5/RTnKRtT3E+vc6Ky/eXb8uOL50Vl4/Oy/n7nAQDUMc1Q2j3zkGIAKlZRDEqjhKVhx1XJ77VYZfJ92fP4evLKzslk52bXoTg2HufHlvVnj/nK2qL8egAA+5KxhNJiUMpCUl4xpOXF86cdqIr7zdcwiuOLx9nry65D/vXGc4qvPx5nY6OsPxubVdaWPxcAYF8zlrfv88eZqvaorC8LVVnAqhobDbNmlUHHFM8vGz/InHXm6yWe309x/swg62SaHg8ATM8+8fZ9PlzE58UaVAwoseLYSYWVbF/5/WVrlun1Onr19RPHjmN8rOy6ZRXlH7PnAABL2VChNAtDmSz85GsY2bzxsUnZ+lV7ye+z7Jyy1x/PySr2l53TS9n44hxZXxQf43FR1di6mh4PAOyfhgqlvQJFWRDK9OvL5o2Pvc7NxHPyVdUWxedV+x40IGX7K+63qrJz8o95xXPzx1lbr/FRPK/YF4+z8QAAS9nIv9GpLAyVtWWKfVloKju/ap5e89eVrVtl1Pmnpdf1i8ZxrQCAA9M0v6d05FAKAMD+aZ/4QScAABgXoRQAgMYJpQAANE4oBQCgcUIpAACNE0oBAGicUAoAQOOEUgAAGieUAgDQOKEUAIDGCaUAADROKAUAoHFCKQAAjRNKAQBonFAKAEDjhFIAABonlAIA0DihFACAxgmlAAA0TigFAKBxQikAAI0TSgEAaJxQCgBA44RSAAAaJ5QCANA4oRQAgMYJpQAANE4oBQCgcUIpAACNE0oBAGicUAoAQOOEUgAAGieUAgDQOKEUAIDGCaUAADROKAUAoHFCKQAAjRNKAQBonFAKAEDjhFIAABonlAIA0DihFACAxgmlAAA0TigFAKBxQikAAI0TSgEAaJxQCgBA44RSAAAaJ5QCANA4oRQAgMYJpQAANE4oBQCgcUIpAACNE0oBAGicUAoAQOOEUgAAGieUAgDQOKEUAIDGCaUAADROKAUAoHFCKQAAjRNKAQBonFAKAEDjhFIAABonlAIA0DihFACAxgmlAAA0TigFAKBxQikAAI0TSgEAaJxQCgBA44RSAAAaJ5QCANA4oRQAgMYJpQAANE4oBQCgcUIpAACNE0oBAGicUAoAQOOEUgAAGieUAgDQOKEUAIDGCaUAADROKAUAoHFCKQAAjRNKAQBonFAKAEDjhFIAABonlAIA0DihFACAxgmlAAA0TigFAKBxQikAAI0TSgEAaJxQCgBA44RSAAAaJ5QCANA4oRQAgMYJpQAANE4oBQCgcUIpAACNE0oBAGicUAoAQOOEUgAAGieUAgDQOKEUAIDGCaUAADROKAUAoHFCKQAAjRNKAQBonFAKAEDjhFIAABonlAIA0DihFACAxgmlAAA0TigFAKBxQikAAI0TSgEAaJxQCgBA44RSAAAaJ5QCANA4oRQAgMYJpQAANE4oBQCgcUIpAACNE0oBAGicUAoAQOOEUgAAGieUAgDQOKEUAIDGCaUAADROKAUAoHFCKQAAjRNKAQBonFAKAEDjhFIAABonlAIA0DihFACAxgmlAAA0TigFAKBxQikAAI0TSgEAaJxQCgBA44RSAAAaJ5QCANA4oRQAgMYJpQAANE4oBQCgcUIpAACNE0oBAGicUAoAQOOEUgAAGieUAgDQOKEUAIDGCaUAADROKAUAoHFCKQAAjRNKAQBonFAKAEDjhFIAABonlAIA0DihFACAxgmlAAA0TigFAKBxQikAAI0TSgEAaJxQCgBA44RSAAAaJ5QCANA4oRQAgMYJpQAANE4oBQCgcUIpAACNE0oBAGicUAoAQOOEUgAAGieUAgDQOKEUAIDGCaUAADROKAUAoHFCKQAAtS1fvjzMzMykddBBBy0+ZhX7hyGUAgBQWwydJ598cjj22GPTOuGEE8KGDRvChRdeGDZv3hyWLRsuXgqlAADUtnv37nDDDTekgfSkk04KL3/5y8Ov//qvh3PPPTd9fPTRRztnDkYoBQCgthhKY23ZsiWsXr06DadPecpTwoknnpgG0tg3DKEUAICeWq1WV8XwGes973lP+nb+0572tJECaSSUAgDQUwyeZcF0YWEhvOhFL0of43HxnEEIpQAA9BRDafwBpmLojEF0165dIwfSSCgFAKCnLJAWZW35MFp2Xh1CKQAAPZXdJa1TgxBKAQDoqSqURtnjqIRSAAB6euihh4aqQbQ2bty4cNmWK8L98wudpm6z11wZTj/99M4RAAAMZv369eHOrTs6R91WrWyFC84/t38ofeoRh3SeAQDAcEYOpQAAMClZKPU9pQAANE4oBQCgcUIpAACNE0oBAGicUAoAQOMWf/oeAACasPiRUJ1jAABoQAj/P52guj7L8k1aAAAAAElFTkSuQmCC" alt="" />