code{white-space: pre;}
pre:not([class]) {
background-color: white;
}
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
height: auto;
}
正态QQ图的原理
QQ图通过把测试样本数据的分位数与已知分布相比较,从而来检验数据的分布情况。QQ图是一种散点图,对应于正态分布的QQ图,就是由标准正态分布的分位数为横坐标,样本值为纵坐标的散点图。要利用QQ图鉴别样本数据是否近似于正态分布,只需看QQ图上的点是否近似地在一条直线附近,图形是直线说明是正态分布,而且该直线的斜率为标准差,截距为均值,用QQ图还可获得样本偏度和峰度的粗略信息。图形中有一段是直线,在两端存在弧度,则可说明峰度的情况。图形是曲线图,说明不对称。如果Q-Q图是直线,当该直线成45度角并穿过原点时,说明分布与给定的正态分布完全一样。如果是成45度角但不穿过原点,说明均值与给定的正态分布不同,如果是直线但不是45度角,说明均值与方差都与给定的分布不同。如果Q-Q图中间部分是直线,但是右边在直线下面,左边在直线上面,说明分布的峰度大于3,反之说明峰度小于3;图形是曲线图,说明不对称。
分位数(quantile fractile)又称百分位点,或者下侧分位数。 定义:设连续随机变量X的分布函数为F(X),密度函数为p(x)。那么,对任意0<p<1的p,称F(X)=p的x为此分布的分位数,或者下侧分位数。简单的说,分位数指的就是连续分布函数中的一个点,这个点对应概率p。
R语言模拟
rd=rnorm(100)
plot(density(rd),main = "正态随机变量概率密度",lwd=2)
points(rd,rep(0.01,100),pch=20,col=rainbow(100))
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABUAAAAPACAMAAADDuCPrAAABoVBMVEUAAAAAAFQAAIAACv8AGf8AOP8AR/8AVFQAVIAAVKYAV/8Adf8AgIAAgKYAgMYAhf8Ao/8Asv8Awv8A4P8A/woA/xoA/0cA/1cA/2YA/3UA/4UA/5QA/6MA/7MA/8IA/9EA/+AA//AA//8FAP8UAP8U/wAk/wAzAP9CAP9C/wBSAP9S/wBUAABUAFRUAIBUVABUVFRUgIBUpqZUpsZUpuNhAP9h/wBwAP9w/wCAAACAAP+AVACAVKaAgFSAgICApqaAxuOAxv+A/wCPAP+P/wCeAP+e/wCmVACmgACmplSmpoCmpuOm48am4+Om4/+tAP+t/wC9AP+9/wC+vr7GgADGplTGxoDG46bG/8bG/+PG///MAP/M/wDbAP/b/wDjplTjxoDj46bj/8bj///rAP/r/wD6AP/6/wD/AAD/AA//AB//AC7/AD3/AEz/AFz/AGv/AHr/AIr/AJn/AKj/ALj/AMf/AOb/APX/DwD/HwD/LgD/PQD/TQD/XAD/awD/egD/igD/qAD/xoD/xwD/1gD/46b/5QD/9QD//8b//+P///+HUBihAAAACXBIWXMAAB2HAAAdhwGP5fFlAAAgAElEQVR4nO3di7vjWkPQ4c6IlwM6AurnFUVUEB1FZUQP3hgExusRsKgchKoHUFHxfr8XBufsv9rm0jZp0jZZTZO1st73eb7vzOzp7k5X0t9eadJ08wJAkM3SCwCQKgEFCCSgAIEEFCCQgAIEElCAQAIKEEhAAQIJKEAgAQUIJKAAgQQUIJCAAgQSUIBAAgoQSEABAgkoQCABBQgkoACBBBQgkIACBBJQgEACChBIQAECCShAIAEFCCSgAIEEFCCQgAIEElCAQAIKEEhAAQIJKEAgAQUIJKAAgQQUIJCAAgQSUIBAAgoQSEABAgkoQCABBQgkoACBBBQgkIACBBJQgEACChBIQAECCShAIAEFCCSgAIEEFCCQgAIEElCAQAIKEEhAAQIJKEAgAQUIJKAAgQQUIJCAAgQSUAJ9+vz1lyNuvt28772T3i9f8/Htqy9u/fuuc29ff+j+gO3tO7k0dBn3mzeD7m+7+eyrMT+fiAkod3x82/98//h2sxmYjJcyZJuebh3i1Pflq/abza1s7zZ9Lpd/O+5nlo90QEKLhziktMXtBo8bcRNQbivq0dus61mpp2L75r8Xpey59dDonBzid+MbDj/yXfsrh5/bWfrtuH6WXR7yHfuBYS7GwiR0HQSUQhGyW3qadT0X+/P3vWt8rWrG1x+aiTsH9LyjvLuVyCLb5/gcvqkVzDEB/fpDeT+7xmyw++2nO2n8w655h/vGGFz5JdHVDPLXH0bWnJgIKF191em4vje9L3dR25PLbf2X4quNSLUCuukJb0dz+lh+T/Om4wI6aH+//o7zl3et2zRfdT3cY+NnHf52vt2h+420Hv727nyrsfNhIiKgdA0KaDskh3ad/lYF9FCJ3/QX3jenoyfnOV8roFVILvbqt7enxu3k9f2wGwE9/Mvhx1ZLc1jcxguT5Qu81zXmj8MWrf3roeP67wviJqB0DQrotnUoZN/IRRXQQ2DfbY83ubZzfD+gPTfeX30JceQMtBnQ/fUjO6fbdLVnli27Zhkbj+50V1tHktInoHRdCWj/Me7uxKxq0fZwH8dpXXvntuFcy8OfFgvop88/++pGQLebqz9we17W/fHhV2dOHe648T2tXw/17Yrh1NDECShdQ2agRRK+r//Vu7JF1bStnqY2XvRrK5tY/rg7Af34J74YENDexHceym7z6i9tNj90Duhh8V79jYv2nueH9Yu9H//kl9U3v2neU+MFzOOUvDpLqnW73vn1zrH49AkoXUMCWlTsH/efIloGtDqJaVfF53QQ5jRN67x6+EO3A1pM9ZoB/aneIu/6ZqCNyl/80GNAi4nr5eT1dJJBPRh14IsXM09jczol4NPnh3+rz+sqX7Q9DE1rcnlejPNBsGphP771AmjCBJSuIQHdFk//bW/GyoDuyrRUk8X2sZ3mt5xPJr09Ay3v4fubM9BuK1/KueW1M6taB8svduGLb+ucPLXfHE8mqE93KopaFrj7M8ov/5Zy8ba9x4SuBrQYAAVNl4DSNSCghyf+4Sb9x1CKgB6S8q68p0N92q/7Xc7zhgS0mve1d+EHvj/o+GNbJz+1TmN6U75c2z37dFcX8039eOuXJPpyVy38rryr3qW6fRTennyyBJSTbeOI+L2A1iXpnfIVAf349nwPu83VgO6GBXRb7jdfvAbafBto7/lLF453Wrzi2ZqBlrPQbd9Pff332t+/6xmX4q2ux4U//qo4PZij67vwJE1AOdltTi/p3Qvo6Sz6vrdFFgFtXGpkv/nsr10JaDkLvB/Q+qddHkQqv3v8cexdtZN9Dmh5iKvngXx8+6b8EWUgq5c3uz+t3MWvF77xNqld++CVgK6UgHJyekY3Alrug3ecd5/b73KslK+Bnq5Bsi+nd/0Brc5XL79yI6DHxekcha/z1rhh3wTx8mvVqfnvzgHdVQeoel8+3Zd3f+Pd87viwR534etpeXHj9r68gK6UgHLSE9D+616Ur+jVX24dlq4cT6R/83J8g1Lz7UQXb708vgh4PaCnk0i7pzE1ZrCnv97YeT8t8KvvK/9XBfQ3vq1eX3395bVzQW/0szpmVCz83zoNxPZ4uL71pv16kAR0VQSUk2ZAmy7rUR453h5z0axpperQ6U4O335tBlqG9YfKCl4P6PbYnp7zQNvX7zhPI8+nsfceXS9rdzyNqa31y2BXn4RVBLY6ZnbRvN2p/o1QV5c+bZ3mWR1zay2igK6BgHLStwvff7OiAac30rTr8XJ6V+SuSmeVoN6AVvUqz+98/dPXAnq+kEcroIckFV9vXa10UECrQ1qNU+4/+0fV6USdyWd9+n/1EKoblK85dI+yl0PQeNvmm5f63NDGXTVedeidjZMiAeVkUEDPL3qe34p4OgZeRWJ/evvRm9sB3dflLeZn1wK6q15i7HU5NR4S0DLar74o/1POQF9/2V2wl5fmwfrqnnanMwEub9lzCsDlyx7Nl23NQFdEQDkZENDW1ei25x3e6kXO85VD6oB+9tWtgBYx+b769KDP/kn/xUR2zUuKNrLUvi5o4w7vBfSwcH+quNW+eg208Vhat6svjnLRxjfVLZs/uLow/+52P8+XKmlfDpXUCSgndwN6cWX21vUyGmeE1rUo7+UY0L7d1kN7vv9D43B++1BRV+N9T/0Ht67MVC9eUa1PqioOG/30h3NwN80jSMczuo73WL0kcXxYbxq3GnYWfP9ss++0UpIioJzcCWj73eK762dg9gW0bwa6K3fc6741D7NcCej5I+XKV027S3hlBnpx4tT7xtWYjpe037f7+VK/E7U8F/T4NqTji5qnt4Vevo29+5F2jX+qrwxwu+6kRkA5GXgQ6aV6m+b26uSrDmh5+vuNgBbxOteydXLnlaqcZmxXPhZuQEC3p7NSq7Oj9o2j6Fd/I5wOAd22uz4fPZ+81HhX/u3PdyIFAsrJoIBu3x3Pvjw///ftbpxfOLx5EGl3fotP819uBPR4QOfax2pe2YVvHfc/nVRVn166PV7SY3hA609TOg5I80r8pxOu2iFtXA/1/BlIe/1Mn4ByMiSg9Tu/ixs23oveObj+pnzV8+ZpTGXLzrU8vRf9RkDrc4mufkjm+f0+zRlo86Hsqrlzcxe+midv/sz1y85fBLRYwMZfz5dfOp+Hf/lJR81Xi49vjXIdpjUQUE6GBHTbmDY2plDb5muS9dWYTieh9wd0V78hvbqL84+sv/Tp876e7asj3lfeGPTp8/enP/XuTJevaDYC+tc3r/724T9//+3m9T9oBPTOJxhtNs1He75AUzugF6+8nv+6L7+57z2wJEdAORkQ0GoKWM8WjzvBhxw1r4zU+nihRkDrD2p7d7yn41Hu9/X31P9wCmjvy4m7dr2uaU35/sQpt/vyOxufylm+g704FeDdjQ8+uv0a6PkyTq2Athq/b/11W1+ab/x1UIiNgHJyP6D1zKp96bfyrd/dD5Wr/7E5A91vzpndta4P0nqRsPzSx/6r3V85/n6pEdDuxy9vT9eWrxamfNNl/REkvff9cEC37e9vnTVLygSUk/sBrY8bXQS0+EszbI2A1juqx7ez7y9f3my8GvCu/aXuVZTqO7g4LNRa/Gvau/znGWi5MNUJVHVAe18ceDSgx5Olmo9aP1dBQDnpD2gjetvN8YXNdkCrSyufknAOyeGGv7HnTeZndcVO75c8f2nf80Jn+drk+92A0yevvAZ6XKryrj99/q6+aT0hDQvo7n5A9xe/j7bdqJMmAeWkN6D7c65OO72tgNYfetE4c+cYktP08/rRkrqWzQvbny5e3DdbPZ6hf28GdxHQ9oVCW4t/PHJfBrT+IJJLjwa0/dFR5asdP3V1Ik1KBJT2Oy37vbm8fesNmReTqdPVmOrv6+xbn2tWXY6u/dFKp6Vp3W1ZzeNPrY9HXX8xtPOp7BcnHr1v/NPpqnzlC6F993kroNdeOGgsfCvfxxeL63NWzUPTJqCM14lGOwP7UzgbZyb137gM6OH/mnPNuo6t2+0uc9k80+j99UspN5wT2AjoedJ4usP+T8m7PgPd9/xbewa6a72+2/7L5bKRFgElwMWUtfeK9BeOWWzvuBbZ+st3pmGXH9xxtAuNT/Oc/fZH3/X383ZA+zRf0z2dkNWaQ5/ueONwUsoElMnthr+417rqcP8Nbu3m3jp587rjuUp9x6l6Db5hr9NHJPW/4rB3RaaECShAIAEFCCSgAIEEFCCQgAIEElCAQAIKEEhAAQIJKEAgAQUIJKAAgQQUIJCAAgQSUIBAAgoQSEABAgkoQCABBQgkoACBBBQgkIACBBJQgEACChBIQAECCShAIAEFCCSgAIEEFCCQgAIEElCAQAIKEEhAAQIJKEAgAQUIJKAAgQQUIJCAAgQSUIBAAgoQSEABAgkoQCABBQgkoACBBBQgkIACBBJQgEACChBIQAECCShAIAEFCCSgAIEEFCCQgAIEElCAQAIKEEhAAQIJKEAgAQUIJKAAgeIO6AZgMtMnavJ7nNDSow2sy+SNmvoOp/SEXxhAtgQUIJCAAgQSUIBAAgoQSEABAgkoQCABBQgkoACBBBQgkIACBBJQgEACChBIQAECCShAIAEFCCSgAIEEFCCQgAIEElB4tid8cg5xEFB4pid+/BjLE1B4nqd/hiPLElB4llk+BpclCSg8RzOaErpSAgrP0M2lgq6QgML0rrVSQVdGQGFqt6aaEroqAgoTu72nrqBrIqAwrXuFVNAVEVCY1IA8KuhqCChMaVAcFXQtBBQmNDCNduNXQkBhQkO7qKDrIKAwneFVVNBVEFCYzKgmKugKCChMZWQSFTR9AgoTGR1EBU2egMJExudQQFMnoDCNkBoqaOIEFCYR1kIFTZuAwiQeCKitMlkCClMIDaGCJk1AYQLhGVTQlAkoTOCBCipowgQUHvdQAwU0XQIKj3ssgQqaLAGFhz1aQAVNlYDCwx7tn5dBU5VuQD99vnk3+ptspDzB4/lT0EQJKDxoivgJaJoEFB40SfwUNEkJBfRQzD6vvxyzcDZRpjZR+hQ0RQIKj5kofAKaooQC+rIXUOIzWfgUNEEpBbScg3721fkvXgNledNlT0HTk1RAX162m82rL6o/CigxmLB6zmVKT2IBffn4dlN3U0CJwZTNU9DkpBbQl68/1LvxAkoEpk2egKYmuYC+vOwO29h7ASUKExdPQROTYEDL3fg3AkoEJg+egqYlxYCWu/Gv/4GAsrjJcyegaUkyoNVu/EZAWdgTcqegSUk0oOVuvICysGfETkFTkmpAy1NCBZRFPaV1ApqSdAMaxJbJhJ6TOgVNiIBCoGeVTkDTIaAQ6FmhMwVNh4BCmOd1TkCTkXhAP769dTm7vqvfzbhwrNvzNidbajIEFII8c3OyqaZi1QHtslUylWc2TkBTkXhAx7JVMpHnNk5BEyGgEOLJhVPQNAgoBHh24AQ0DQIKAZ7eNwVNQnoB3Z4OqL8Z/802Sabx/LwJaAoSC+ju4qSksQ21STKJGeaHpqApSCqg5TXs2kadxCSgTGSOuAloAlIKaHEh+mYxi4+JP39O/CC2SKYwy+zQFDQBKQV038llkdT3Y+7CBskU5kmbgsYvpYBuuzvsh0noqJdBbY9MYKayCWj8EgroYbrZvQT9btw+vO2RCcwVNgWNXkIBPcw2u7vre++FZ27zdU1AYyegMNJ8WTMFjV1CAbULTxxmrJqARi6hgDqIRBTmnBaagkYupYD2n8Y06rONbYw8bNamKWjcUgpo74n0496KZFvkUfMmTUDjllJAq2K2vfpi1D3YFnnUzEVT0KglFdDmpZhcTIRlzB00AY1ZYgF9cTk7ljX7jNAUNGbpBfQhtkQeNH/OBDRiAgojLDAfNAWNmIDCCEvETEDjJaAwwlIBteHGSUBhuGVaJqDRElAYbpmUmYJGS0BhsKVKJqCxElAYbKmQmYLGSkBhsMU6JqCRElAYarmJoClopAQUhlqwYgIaJwGFgZacBpqCxklAYaBFGyagURJQGGjxgNp6oyOgMMzCCRPQGAkoDLNwwUxBYySgMMjiAVv659NDQGGQxfu1eMHpElAYZPl8Lb8EXBJQGCKC+V8Ei8AFAYUhYohXDMtAi4DCEDHEyxQ0OgIKA8TRrigWggYBhQHiSFccGedMQGGASMoVyWJwJKBwXyxTv1iWg5qAwn3RdCuaBaEkoHBXPBO/aBaEkoDCXfFkK56UUxBQuCuiakW0KAgo3BfTtC+mZUFA4a6omhXVwmRPQOGeqJplChoTAYU7IktWXEuTOQGFOyIrVmQ9z5uAwh2xBSu25cmZgMJt0c34YluenAko3BZdr6IresYEFG6KMFfxLVG2BBRuirBWETY9VwIKN8UYqxiXKU8CCrdEOduLcqGyJKBwS5ypinOpMiSgcEucqTIFjYSAwg2xlirSxcqOgMINsYYq1uXKjYDCDbGGKtaZcW4EFK6Lt1PRLlheBBSuizdT8aY9KwIKV8VcqYgXLSMCClfFHKmYly0fAgpXxRypmGfH+RBQuCbuRkW9cLkQULgm7kTFnfdMCChcE3mhIl+8LAgoXBH7FC/yxcuCgMIVsQcq9sDnQEDhiuj7FP0Crp+AQr/4J3jxL+HqCSj0S6BOCSziygko9EugTgks4soJKPRKYf84hWVcNwGFXkm0KYmFXDMBhV5JtMkUdGECCn0SSVMaS7leAgp9EilTIou5WgIKPRKZgCaznGsloNAjmS4ls6DrJKDQI5kumYIuSkChK6EspbOkaySg0JVQlRJa1BUSUOhKqEoJTZZXSEChI6kopbSsqyOg0JFUk5Kq/doIKHSklaS0lnZdBBQuJTanS2tp10VA4VJiRUqs96sioHAptSCltrwrIqBwIbkZXWrLuyICCheS61FyxV8PAYUL6eUovSVeCwGFtgTnc+kt8VoIKLQlWKMEm78SAgotScYoxWVeBQGFliRblGT11yDVgH79odhi3o39NhsZ96SZojSXOn2JBXR/2Ew++6r6b+H1l+O+30bGHYnO5dJc6vQlFdBq2rl59cXHt5uwgtrIuCPREiXa/eQlFdBtXc3Pfqou57aajw5nG+OOVEOU6nInLqWAHuadRTZ3m82pm4dd+fdj7sI2xm3JzuRSXe7EpRTQXb3Dvi324qsvHXbq34y5C9sYtyXboWTLn7aEAnqIZXXU/TATPe2478btw9vEuC3dDKW75ClLKKCfPq9315vTzv24w0g2MW5KeB6X7pKnLMWAHvbhBZSnSLhCCbc/YWkFtD5xftvchRdQppNyhFJe9mQlFNDDnnv39c6tg0hMJ+lZXNILn6qEAlqcv3R5ztJ+5Ns5bWDcknaC0l76NKUU0MM+fHu+WXxh3FuRbGDcknaC0l76NKUU0Ood8OdJ6Lb91yFsYNyQ+E5w4oufpKQCWhT0eAr9S/WWpHH9FFBuST1AqS9/gtIK6GHW2dhl3407gFSwfXFd8jO41Jc/QakF9EG2L65Lvj/J/wZIj4BCLf38pP8IUiOgUFnB/C39R5AaAYXKCuqzgt8BiUk8oPUlQq/Y9Jhx4UjLGjaPNTyGpAgolFaxeazhMSRl1QHtsnVxzSras4rfAilJPKBj2bi4Zh3pWcejSIeAQmElc7d1PIp0CCgUVlKelfweSIaAwsuKwrOWx5GI9AJ6/HD4zfh3wgso16ymO6v5TZCGxAK6uzgpaWxDbVr0W0921vNIUpBUQD++7ZzWOe56ygJKvxXN29bzSFKQUkC//tAuZnFB+nEfCy+g9FtRdVb0uyABKQV038llkdRRl1S2ZdFrTdFZ02OJXkoB3XZ32A+TUJ/KycNWNWtb02OJXkIBPUw3u5/AuRu3D2/Los+qmrOq3waxSyigh9lmd3d9773wPG5dyVnXo4mbgMLK5mzrejRxSyigduF5kpUVZ2W/D6KWUEAdROI5VhectT2eiKUU0P7TmLqz0htsV3Strjere0DxSimgvSfSj3srku2KrtX1ZnVT6nilFNCqmG2vvhh1DzYrOlaYm/U9olglFdDmpZhcTISJrLA2K3xIkUosoC8uZ8fEVjgBXeVjilN6AX2IrYpLq2zNKh9UjASUzK2yNat8UDESUPK2zr3ddT6qCAkoeVtpaVb6sKIjoGRtrVO1lT6s6AgoWVtraNb6iyE2AkrWVtuZ1T6wuAgoOVvvRG21DywuAkrO1puZ9f5qiIqAkrMVV2bFDy0iAkrG1jxNW/FDi4iAkrE1R2bNvxziIaBkbNWNWfWDi4WAkq91T9JW/eBiIaDka92JWfevh0gIKNlae2FW/vCiIKBka+2BWfvji4GAkq21B2btM+wYCCi5Wn9fVv8Alyeg5Gr9eVn/I1ycgJKp9U9Ac3iISxNQMpVDXHJ4jMsSUDKVQ1xyeIzLElDylMXubRYPclECSp7ySEsej3JBAkqWMpmb5fEoFySgZCmTsmTye2I5AkqWcglLLo9zKQJKjrKZmeXyOJcioOQom65k80AXIqBkKJsJaEaPdBlzBPTTX/xq6h8SyrZEIaOqZPRQlzBLQD/fbN5M/WPC2JYoZFSVjB7qEuYK6MG7qX9SANsSL3nt1+b0WBcwz2ugu03l/dQ/bCybEi+ZzcqyerCzm+0g0rZK6Osvp/55o9iUyG1SltWDnd2MR+G//lA19LMFDynZlMgtKXn9upjbvKcx1a+GLndIyZZEdkXJ7OHOa/bzQOt56Ksvpv65g9iSyC4ouT3eWc0c0OPRpKVmobYkcpuA5veA5zRnQHen40jlNHSJ05psSOSXk/we8XxmC+jFmUyfPl/kgLwNifxykt8jns+854E2Jp1bAWUJGe7QZviQZzPjO5Fapy8dduKXOJ3JdpS9HGOS42OeyVwBXeio+yXbUe6ynI3l+JhnMk9AF38L55HtKHdZtiTL3xrzcD1QspJnSvJ81HOYZwba2oHfLvhmTptR5jKdi+X5qOewSECXu6KIzShzmZYk098bM5g/oAudAVqxFeUt25Dk+rif7skBbbx1s8EuPMvItiPZPvBne3JAj5dfalvu2vS2oqxlOwHN+JE/2bN34fdR9VNA85ZxRTJ+6E+1wEGkJdmIcpbzNCzjh/5UAko2co5Izr88nsmJ9GQj64Zk/eCfR0DJRd6TsKwf/PM8N6DFQfj33UPxzgNlAXknJO9fH08joGQi94Jk/vCfREDJRO4Byf3xP4fXQMlD7hNQA/AUAkoe5MMIPIGAkgXzLwF9hnkD+vHtklcSeRHQfKmH3yHPMFNAP31edLPo57Ifj2QDypR4vPgl8gzzBHRfHnn/+sPSB+EFNFfa8WIQnmGWgBYzz8O88/CfQzt3LmfH3ExAC0ZherME9NDMN9V/inRuy78sw/aTJ+UoGYbJzRHQw6578Qro4T/ly597J9IzL1OvimGY3DyXs9u8fzl/GJKAMjPhqPhFMrkZA7qvduQFlJnpxpGBmNqMAd1uyv+87HyoHLOSjSMjMbWZXgN9d34J9JBTB5GYk2wcmYtPbZaj8NsinbvqTUjFKU3vp/6Zg9l6MqQaZ4ZiYrOdB1p4X+7HL/lmTltPfvSzwVhMbJ53Iu3KjbgI527RNyIJaIYEtMFgTGym98IXHw9fH4Jfbv/9RUAzJBktRmNaLmfHuilGi+GYloCyaiagbcZjWgLKqunFBQMyqZkCejwOv/T17Gw7mTHhumRAJjXnUXgBZW5yccmvlEnNEtD9RkBZglp0GZIpzfROpEVP/myw6eRFLLqMyZRmei98JP0U0LyYgPYwKFOa6WpMy32IR5stJytS0ceoTEhAWS1zrV5GZULzXc5uEuXpUI2LkYx9dcCWkxOl6OX3yoRm+lC5iS7AtK0P458uKCqgXCUUVxiX6cwS0Kn24Y/9PE9CBZRr9PMaAzOdeU6kP+x5TzAHPV6LeXcuqIByjYBeY2SmM9NBpElOpN9WnwlSZrMuqIByhUpcZ2gmk1BAD7E8vfa5rQsqoFwhEtcZm8kkFND6wz0rdUEFlH4moDcYnMkkdDm7VkCLgr4RUK6RiFuMzlSSDWjxOug7AaWfOdZNRmcqCQW0+Rpo9dfNewGlj37eZnymMltAixdCi0+Hf+B0pl37E+U/vt28+tsCSg+BuMP4TGSmgFbHkYqAbsI/lrM4D7R5Qv5+/BEpW00W9PMeAzSReQJaH4c/BLR4M1FwQXett3HWBRVQLsnDPX7FTGSWgFYnvn98W5wH/9DFlYuCNuegxZxUQLmgDvcZomnM9ZEe74ralW8k2m0eeGN858JOOwHlkjjcZ4ymMdNHehSHjuqAHho40bWZAthoMmACOoBBmsaM1wOtAzp20jgp28z6ScMgRmkSM72VszhudAzoXkB5IgEdxChNQkBZF/0cxjhNYoFd+O2Er4F+fHurxpseU/1k4mQlD2WgpjDTQaSicnVAD/PRN92bBBJQ2qzkoQzUFOY6jenNMaDlW9gn+2G3A9qzcDaZddPPwQzVFOZ5J1J59nwZ0MbHcSzBFrNuojCCsZrArG/l3Ix/8/rEbDHrJqAjGKsJzHQxkWLHPYJ+Cui66ecYRmsCs13Ork7oovkU0HVThHEM1+MSuqBy7fzh8AEH820wayag4xiuxyUW0N3FSUljG2qDWTH9HMmAPW62y9mFzhmbiqvXXRj5koDtZb3kYDQj9rAZAtqeNT5wDmjZ4UYxy2P7486Jsr2sl4COZsge9vSANo6/V8LPAt13vnn0Wfk2l9USgwDG7FHPDmjVz2Pkdg8VdNvdYR/7vlCby1rpZwiD9qhnB/TyM5D24a+Edq5GX9iN67HNZa0ENIRRe9STA1p89PAXL7e/MlR9Vby2kdfGs7WslBKEMWwPenJAez4AKfgzkQSUa/QzkHF70HMDetjrfvhly+ad2YWnl4AGMnAPenpAO30L/1A5B5HoJwPBjNxjnhvQ3r71dHCY/tOYRr0eYGNZI/0MZ+gek1JAe0+kH3dfNpY1EtBm2LQAABlwSURBVNBwxu4xKQW0fVnRysgj+raVFdKARxi8hyQV0OalmCouJoJ+PsTwPSSxgL64nB1tGwV4jOF7RHoBfYhNZW3081HG7xECStL081FG8BFPD2gfAWUinv2PM4QPEFASpp8TMIYPEFASJqATMIgPSOwzkR5lQ1kVT/1JGMVwAkqy9HMahjGcgJIqZzBNxDiGE1ASpZ+TMZDBBJRE6edkDGUwASVNnvQTMpahBJQk6eeUDGYoASVJAjoloxlKQEmRZ/y0DGcgASVB+jkxAxpIQEmPM5gmZ0DDCCjJ0c/pGdEwAkpy9HN6xjSMgJIaz/VnMKhBBJTE6OdTGNYgAkpiPNOfw7CGEFDSop9PYlxDCChJ0c9nMbIhBJSUOIPpeYxsAAElIfr5RMY2gICSEM/xZzK44wko6dDPpzK64wkoydDP5zK+4wkoqfAC6LMZ39EElETo59MZ4dEElER4dj+fIR5LQEmDfs7AGI8loCRBP+dglMcSUJLgqT0LozySgJIC/ZyHcR5JQEmA5/VcDPQ4AkoCBHQuBnocASV++jkbQz2OgBI9T+oZGetRBJTYeQvSnAz2KAJK5PRzXkZ7DAElcvo5L8M9hoASN/2cmQEfQ0CJmqfz7Iz4CAJK1AR0doZ8BAElZp7MCzDmwwkoEdPPJRj04QSUiAnoEoz6cAJKvDyTl2HYBxNQoqWfCzHwgwkosfIWpMUY+KEElEjp53IM/VACSqQ8iRdk7AcSUOKkn0sy+gMJKFHyDF6W4R9GQImSgC7L8A8joMRIPxdmBQwjoETI03dx1sAgAkqEBHRxVsEgAkp8PHkjYB0MIaBERz9jYC0MIaBEx1M3CtbCAAJKbPQzDtbDAAJKZDxvY2FF3CegREZAY2FN3CegxMWzNh5WxV0CSlT0MyJWxl0CSlQ8Z2NiZdwjoMREP6NibdwjoEREP+NifdwjoETEEzYy1scdAko89DM21sgdAko0PFvjY5XcJqBEQ0DjY53cJqDEwnM1RlbKTQJKJPQzSlbLTQJKJDxT42S13CKgxEE/I2XF3CKgRMHTNFrWzA0CShQENFpWzQ0CSgw8SSNm3VwnoERAP2Nm7VwnoETAUzRq1s5VAsry9DNu1s9VAsriPD9jZwVdI6AsTkBjZw1dI6AszbMzflbRFQLKwvQzAVbSFQLKwjw3U2Al9RNQlqWfSbCa+gkoi/LETIT11CuhgH76fNPn9ZdjFs42EBkBTYQV1UtAWZKnZTKsqT4JBfTl41sBXRn9TId11SelgJZz0HcP3YMtIC6elAmxrnokFdCioK++eOQObAFR0c+UWFs90gposRf/2VcPfL8NICaekWmxuroSC+jLbrN5/8C32wBiIqBpsb66UgvoYSf+kSmo9R8Rz8fUWGEdqQX0wSmo9R8P/UyOVdaRXEAfY/XHw7MxPVbZJQFlGfqZICvtkoCyCE/FJFlrFwSURQhokqy2CwLKEjwRE2W9tQkoC9DPVFlzbYkH9OPbWxcT6bv2yIwLx1VWRbKsuRYBZX7WRLqsu5ZVB7TLqo+B52DKrL2mxAM6ljUfA0/BlFl7TQLK3DwD02b9NQgoM/P8S50VeCagzExAU2cNnqUX0O3pgPqb8d9svS/Osy99VuFJYgHdXZyUNLah1vvS9HMFrMSTpALa87Gco05iEtDlee6tgbV4lFJAv/7QLmb5QfHjrk9vrS/MM28VrMajlAK67+SySOqo69Nb68vyxFsJK7KWUkC33R32wyR01MugVvqivJt2NazISkIBPUw333W+uBu3D2+lL0k/18OqrCQU0MNss7u7vvde+HR40q2IdVkSUOain2tibZYSCqhd+LR5xq2L9VlIKKAOIqXNE25drM9CSgHtP42pOyu9wRpfjOfb2lijL2kFtPdE+nFvRbLCl+LZtj5WaVoBrYrZ9uqLUfdghS/EGUwrZJ0mFtDmpZhcTCQl+rlKVmpqAX1xObsk6ecqWa0JBvQhua/uhXiirZQVK6A8nafZWlmzAsqzeQF0vbJftQLKk+nnmuW+bgWUJ9PPNct97Qooz5X7M2ztMl+9AspT6efKZb6CBZRn8gLo6uW9hgWUJ9LP9ct7FQsoz6OfOch6JQsoT6Ofech5NQsoz6Kfmch5PQsoT6Kf2ch4TQsoz6GfGcl3XQsoT6GfOcl3ZQsoT5HvUypL2a5uAeUZsn1C5SrXFS6gPEGuT6d85fqSjYAyvVyfTTnLdJ0LKFPbZPpcylyea11AmZh+ZirL1S6gTEs/s5XjihdQJiWfGctw3QsoU9LPnGW48gWUCeln3vJb/QLKdPQzd9ltAALKZPQze9ltAQLKRBx+J7+CCiiT2Ognhcy2AgFlCvpJJbPNQECZgH5ylNeGIKA8TD1pyGpjEFAepZ80ZbU5CCgP0k/actogBJSHyCcdGW0SAsoDHDyiTz4bhYASTj/pl81mIaAEk0+uyGbLEFACySfX5bJxCChB7L1zUyZbh4ASYKOf3JHH9iGgjCafDJDFJiKgjCSfDJLFViKgjCKfDJXDhiKgjCCfjJDBpiKgDCafjLP+rUVAGUg+GW31G4yAMoh8EmD124yAMoB8Embtm42Acpd8EmzlW46ActNmI588Yt0bj4Byg3zysFVvPwLKVfLJFNa8CQkovTYb+WQiK96KBJQe4smU1rspCSgd8snEVrs1CSgtdt15hrVuUAJKg3jyJCvdqgSUmrknz7TOLUtAKcknT7bKjUtAEU9mscYtTEAzt9nIJ3NZ30YmoFkTT2a1ui1NQLNl7sn81ra1CWiWxJOFrGyTE9DMbC4tvUBkZl3bnYBmo5POFW3GpGRN256AJqQ3gXc3xbDvgqdZ0RYooAm4msBwSz8ksrae7VBAoyadrNNaNkcBjZZ0smbr2CoFNFJjEiicpGgN26eARkgCycIKtm8BjY50kov0t3MBjYp4kpfUt3YBjYh8kp+0t3gBjYZ4kqeUt3sBjYR8kq90t34BjUC6mw9MI9XngIAuLtVNB6aU5vNAQBeW5mYD00vxuSCgi0pxk4HnSe0ZIaALSmtTgTmklVABXUxKmwnMZ7NJJ6ICupBUNhCYXzoJTS+g29PAvhn/zbGsjTQ2DlhOGhFNLKC7TdvYhsaxJuLfLGB5KSQ0qYB+fLu59PrLUfcQw3qIfZOAeMQe0ZQC+vWHdjE/fX74+2dfjbmLpddB3BsDxCfuhKYU0H0nl0VS34+5i2XXwJgN4UcLzS/8SuHBBfjBwphv+IVC8wvfWhhzDz9T+HW/7t7NfuInfrFQ/PG3FV5efmuh+sc/X6j++N9/V+Hl7xR+faHnvn6+8Mf+bOF3Fxr/9F8P/l/h/353ofza//6mb/qmf1lo3sd/+TeFf174o3/w8Pd/dvDvC+W//tPCy4/92I/93oN/Ufh9v+8/FP7H//jDv1w43ObHf/zHv+u7/lzh27/92/9Q4X8evvrf/tu3fdu3/ef//K8Kv+f3/Pb/WDh8+f8Uinv+nsIf+dnCN77xjd/xO/7Avy1853d+Z7VYv/Zrf7VQ/eUnC//rf9VL/Pt//78rvPzO3/CfCt/yLS9/vPCrv/rDhX9YuByo7y28/Eih8dVfKvzrQvvWP1e4uIcfKJR/+o5Cz8oY75sLF1+LN6IpBXTb3WE/TEJHvQy65OiP2gR+tHb6wq/UHlmCH6wN/oZfqJ2+8K21wffwM7U7Ca37WST0t1V+a+2l7meV0Kqfv+vv1HoT+vO1P9tN6Kmf/++7a41+NhPa6GeZ0FM/y4SW/fynzX4e/IfKL9fO/Tz4Q7X/2eznwX+s/Z9a1c/v+dnaN75R9fOU0LqfVUJ/slYltO7nwX+qfcu3lAX94z/8w1cS+r21H2kl9Jdqlwn9uVrzHn6gVvdzkoR+c+3iyxcv3T3+cyaSUEAP0813nS/uxu3DLzfyI1e+gAqogF6IMaEJBfQw2+zuru/HHUZaatzHrvYf/dGLgv7Krzxe0B/8wZEF/YVfuCjot37ryIL+zM8MKui5n7/4i+1+Hgr6508u+9lb0J//+asF7fbzu7+72c9TQdv9rAr67096+1kX9JdPGv1sFLTVz05B2/382Z899bMq6Lmfh4L+5E82C3ru5+CCfu/39hX0l36pv6A/93Pdgv7AyXd8x1QF/eZvvlHQCOehAvp0IStcQAVUQPvFFdGEAprmLnzYqhZQARXQ6+JJaEIBTe8gUvhqFlABFdBbYpmHphTQ/tOYurPSG+Yc6YdWsINIDiI5iHRHDBFNKaC9J9KPeyvSXKP88IoVUAEV0AE2lx5fglFSCmhVzLZXX4y6hznGd5oV6kR6J9I7kX6IThNmjWhSAW1eiqkS28VEYtipgNwsF9HEAvoS7eXslv09CLnreQbO8BxML6APecaILrPigK7eZ+MTn48C+sB9zb2ygPuuPjOf8OwU0FHffddUCwo8YMBzdZLnq4Bev+k4T1xqIMTYJ/H453PiAf349taJoA+Ni3TCSjyvoLkF9O8CTGfqpkUU0K4HZ6AhiwhEKvsZ6FgaCExHQAECCShAIAEFCJReQCN9LzyQn8QCurs4Uhbb1ZiAnCQV0I9vO+cajLuesoACE0opoL1XpB/1mXICCkwopYD2fyZS96OObxBQYDopBTS5T+UE1i2hgKb5ufDAeiUU0MNss7u7vn/Se+EB7hJQgEAJBdQuPBCXhALqIBIQl5QC2n8aU3dWeoOAAtNJKaC9J9KPeyuSgALTSSmgVTHbXn0x6h4EFJhOUgFtXorJxUSApSUW0BeXswOikV5AH3LrQ6QAxpq8UVPf4ZSWHmxgXSZv1NR3uDj7/b0MSy/D0suwDLW+gbLuexmWXoall2EZan0DZd33Miy9DEsvwzLU+gbKuu9lWHoZll6GZaj1DZR138uw9DIsvQzLUOsbKOu+l2HpZVh6GZah1jdQ1n0vw9LLsPQyLEOtb6Cs+16GpZdh6WVYhlrfQFn3vQxLL8PSy7AMtb6Bsu57GZZehqWXYRlqfQNl3fcyLL0MSy/DMtT6Bsq672VYehmWXoZlqPUNlHXfy7D0Miy9DMtQ6xso676XYellWHoZlqHWN1DWfS/D0suw9DIsQ61voKz7Xoall2HpZViGWt9AWfe9DEsvw9LLsAy1voGy7nsZll6GpZdhGWp9A2Xd9zIsvQxLL8MylIECCCSgAIEEFCCQgAIEElCAQAIKEEhAAQIJKEAgAQUIJKAAgQQUIJCAAgQSUIBAAgoQSEABAgkoQCABBQgkoACBBBQgkIACBBJQgEACChBIQAECCShAIAEFCCSgAIEEFCDQagP68e3m/dLLEJfDiBy8+mLp5YjHp8+LEXm39GLExoYywloDWjw3BLShikXh9ZdLL0sktvWASEWTDWWUtQa0eHII6Nn5aeGJUdsZkB42lHFWGtD9RkBbdsd91eI3y5ullyYGxY7qZ19Vm4oBObGhjLPOgFa/RgX0pPGKxs7MorQ99uFQUjvxRzaUkVYZ0K8/bF7/dQFt2J9nE4fBMTJlKY552DmQdGJDGWmVAT08I97vrP2GZiO2RualnHe+Of+x2JfnxYYy2hoDenhCvHsR0Gu29lhfWqUodljsq3bZUAZYYUAPz4fDhEJArzjsu5pvvTS3j8MGoxRdNpQhVhjQ6hengF7hFb9Sc//UVKuPDWWI9QV0X613Ae3nBb9KM5oC2sOGMsjqAnrc8RDQXoenhdf7Cu2A2lYu2VCGWV1At/V6F9A+e+f21cxAb7KhDLSGgJ7efXZ4Gpy6KaDNYal5WpwI6C02lKFWFtDz2X0C2g3oduNlrSNH4W+woQy2soCeLxBRyfkw4mVAi3eWeHPz0d55oNfYUEZYQ0AbBPSq4uIZhuPEO5GusaGMIaCZcMmMNu+Fv8KGMsrKAnrmNdCWQy88LVpcjamXDWUcAc2CK+t0uB5oHxvKSAKahX37lQ0j8+KK9L1sKCMJaA6KeYXnxSWfidRhQxlLQHPQ/KAbz4sTn8p5yYYy1moDCvBsAgoQSEABAgkoQCABBQgkoACBBBQgkIACBBJQgEACChBIQAECCShAIAEFCCSgAIEEFCCQgAIEElCAQAIKEEhAAQIJKEAgAQUIJKAAgQQUIJCAAgQSUIBAAgoQSEABAgkoQCABBQgkoACBBBQgkIACBBJQgEACChBIQAECCShAIAEFCCSgAIEEFCCQgAIEElCAQAIKEEhAAQIJKEAgAQUIJKAAgQQUIJCAAgQSUIBAAgoQSEABAgkoQCABBQgkoACBBDRDu83m9Zfnv+43m3dj7+LT5817+PT5ZtO+k+5XbizMyZuxi1H/qM++uvqvX39oPdbmzT/9zfoGr74I+bk3H+THt33/1B616jbNH159JWgUWIaAZmjXfpYGBLSdpW3dv3MLul+5uTBn70cuyEt4QLfVow4P6PUHebjPvsfTWpaqvoXj1658FzET0Azt2k/SgIBum3PYcwKPX+t+5c7CPFLQwIAeH3VwQK8/yHMJ24+nOWrnfp6+uH1kFFiGgGZo137Wjw5oGYjT9xf7nUWS9qd5bfcrtxfmmIvj941zO6BXb/5oQG88yF29915E8rxo7VE73qbMZvn9xzsqvuv+7x3iIKAZ2rVfcBwb0OqVutNzfNvoZpWi7lduL8xpvnVox/iYLRTQ6w/yfI/Nx9MetaKS9cM+viK9Pa6Gxr8ROwHN0OEp+6ffnp+k4wJa7nv+lg/NFDT23N/1fuXOwpxrsQ1IxzIBvfEgD6k8/nI6PbjLUduff4EVM9PiRtvTcgwYNSIhoBkqnqCNI/GXAd23X5W8yEsxfX3feGWxkYvDH4s2db9yZ2GaAT39tG3zh1c/r5w5n++vjNKbuojb7qyvXI7zkrZufnyM7+uA7tt3fX8ghj3I0y+Ey1FrNnLbE1Az0EQIaIaKZ28x76kLMDagb1qHZhopqL/a/cqdhWnuwtcpOh+hKb9Q3M/ff9s+wlLf5LN/Un7T6W72m0a03p+XoH3zi4Bu23c9YCAGPcjzNPVy1Jrqcp7u8YETq5ibgGaofKp+fNtIzoiAltoBfX/+anHj7lfuLEzjIFJ96+ah+Xcv7ePa9W1ON/nNZRFPM8LTOVrVMh6X9OLm7YB+3/Ef2327E9C7D3J3keT+gB5/axQz5DeN/5ICAc1QNdc57cQ/dh5o82XLai7V/cqdhTlr7G2/O/6hqEsV0Pcv3SPcx33v4xKVtzwG6Tzru7x56zXQi7se5O6D3HantP0B3TUPHlX0MxkCmqHqKVuUo3zmPhrQ5vnzVUAvv3JnYRpOc+K6IYeJZfGDimU97QyX/7Y7vmR5PJ1oV/2kQ4X+cvWnfXlv55cV2jdvBbR914PcfZBDA9p8BXXb90ICMRPQDNVznuMe85QBLZ783a/cWZimi4LVryKeYn8MTmO3uW7j4evvygdTvFh6Pihz2pG/uHkroK27Hubegzy+6NC8w76A1r8h6ru58aoJURLQDB13Gnen3dplZ6CNFxPbi3I697wRwKpyjbOI6uxVe+yHH1gcJqr23eud/8MNuzfvO40pPKBXHuTFy5k9Ad1vWv08vt6roKkQ0Azt2pOvxw4iTRjQ5mVOzgtxLaDH1h3/uK2nmu+KiH51nJGeAnp58wEBvTUQwx5k+50B3YA2+tk4H38X8oYsFiGgGTodtqietNEchT+/Cefj283tgDZa1yji++Lr76uXQ+vXRKsl7b/5IwEd+CBb58R3ArptlLJ9XpQpaCIENEPn52o513ksoPvWE7/4avcrdxbmHND6XTnH49Gvvzy/Bnp3Bnr477viJdAvq4puz2eQPmMGOvBB7m8EtHEq7kt7GutM+mQIaIbOAS134h97DXTSdyLVAd01T2ga+Bpo+fLnV9v6H9/UL4k+7TXQgQ/yRkCLWXZj3AU0SQKaocbeYrET/zceCuik74WvXjNsNG1/ZRf++Abyl8YrhrvN65/+UP68Q0b/Uf3vp6Pwlzd/MKA3HmTP2zQrrYBeXoOkvQsvoIkQ0Aw1n+HVWUSPXFB5wqsx1VPP1uWM+gN6zub5mnGHf/krb+sTs179pXoBL88DPd38wYDeeJCNM5Maf3xpj1rnwlP7TfMgkuvZJUJAM9QM6PDP3mhqpmC664GeTmM6Xnl4d3zpsVu5Y1rLw01V9s4X3Cy/+Ka5pN2b789vsw8K6PUHeT41/+K9TY1R604yTw++czIXERPQDLX2OfePBnTaK9KX39A6etMf0PNt/kzrCiTHFz6PfTouaefm1YH+98EB7T7I06SyeQ5Bs63tQ29Nl2ceOIspFQKaod3F0YuIPhPp8tMtvv/D8Q2ZncrVDaovr3T8yrvj99f3dFrSy5tXbxV6Fx7QzoM875VfeVf7edRaF0c5xv78XfqZDAHNUDugpyt3jHBxQs5Un8rZOsSyOZ7l/+bKfnZZoTeNU5TOBdtvGjdqRqtx8/rv4QG9fJDd689f3Nt5WZqfiHQKaOda/8RPQAECCShAIAEFCCSgAIEEFCCQgAIEElCAQAIKEEhAAQIJKEAgAQUIJKAAgQQUIJCAAgQSUIBAAgoQSEABAgkoQCABBQgkoACBBBQgkIACBBJQgEACChBIQAECCShAIAEFCCSgAIEEFCCQgAIEElCAQAIKEEhAAQIJKEAgAQUIJKAAgQQUIJCAAgQSUIBAAgoQSEABAgkoQCABBQgkoACBBBQgkIACBBJQgEACChBIQAEC/X+PVOmOBz9kKgAAAABJRU5ErkJggg==" title alt width="672" />
通过上图可以看出,产生的100个随机数多数集中在[-1,1]之间,且均值为0。
t=rank(rd)/100 #求观察累积概率
q=qnorm(t) #用累积概率求分位数值
plot(rd,q,main = "Q-Q图",pch=20,col=rainbow(100)) #画Q-Q图
abline(0,1,lwd=2)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABUAAAAPACAMAAADDuCPrAAABg1BMVEUAAAAAAFQAAIAACv8AGf8AKf8AOP8AR/8AVFQAVKYAZv8Adf8AgIAAgKYAgMYAhf8AlP8Ao/8Asv8Awv8A0f8A4P8A8P8A/woA/xoA/ykA/zgA/0cA/1cA/2YA/3UA/4UA/5QA/6MA/7MA/8IA/9EA/+AA//AA//8FAP8F/wAUAP8U/wAkAP8k/wAzAP8z/wBCAP9C/wBSAP9S/wBUAABUVABUpqZUpsZUpuNhAP9h/wBwAP9w/wCAAACAAP+AgFSAxv+A/wCPAP+P/wCeAP+e/wCmVACm4+Om4/+tAP+t/wC9AP+9/wDGgADG///MAP/M/wDbAP/b/wDjplTjxoDj/8bj///rAP/r/wD6AP/6/wD/AAD/AA//AB//AC7/AD3/AEz/AFz/AGv/AHr/AIr/AJn/AKj/ALj/AMf/ANb/AOb/APX/DwD/HwD/LgD/PQD/TQD/XAD/awD/egD/igD/mQD/qAD/uAD/xoD/xwD/1gD/46b/5QD/9QD//8b//+P///+fCH3fAAAACXBIWXMAAB2HAAAdhwGP5fFlAAAgAElEQVR4nO3d6Z8rZ3nn4cdmG4cZs4Ww72FNgCFxZgyDmcPmGEibpTMOyxAIgUwIWwwBDjax9aePSipJJbVaa1XddVdd14uku4+O+H261V8/WrpPmQFwkRI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AIKsSPQAgqxI9ACCrEj0AOvLy0+XBPX/04hOPPtvnFMaqRA+ArtyUQ56MnscIlOgB0JWbVSXnZ9HtXD4s5ZFnIiYxMiV6AHRlHdAXnyhl6z77PKCPx2xiXEr0ANinat7Cg8svug7obSmPPdf8EwGlHSV6ANwxv8vdcPD5nkMXXQX0padWd9hX9+UFlHaU6AGw6/b053sOXnQV0Idbl6jOogJKO0r0ANix58nz+2p3+KJ1QKtD6uPrjywOqQJKO0r0ANhWHyqXd7pXj2/uz92Ri9YBvS2P/M3y8dGHqwdKBZR2lOgBsKXu4Pqu+O39zyUdu+gyoC89VZ5cvnB+/lZ9YQGlHSV6ADTVTwo92Hzk4fqRy3MvugzoTdXK+v+s/kxAaUeJHgBNy1PlVt1u7jmCHr3oIqAPF9GcX/bB7eZZegGlHSV6ADTdbB7UXNkTytMuWgX0paeW0bzdSquA0o4SPQAalnfLt++v7/vYSRetAnpbHzoXf7J+tFRAaUeJHgAN1fM8d+K2OGreeTn98YvebJK56OfmsgJKO0r0AGhY3gffeeH87d376idddBPQZWw3ERZQ2lGiB0BDNwG9XXzwpngWnpaV6AHQ8LCcHNDjF60Dujh+1j/A6SeRaFWJHgAN7Z9AF49+PvI3i17W9+TLY38voLSiRA+AhrYD+j+fXl7oYX323PxeEQGlBSV6ADQcfmp9/Zs/qyae9Cz8+sWfi4NondDH3YWnJSV6ADQsX8i5/ZKlZSnrnyfaBPTwRSuNZ43q91bVFFDaUaIHQFPzhzFfeqrx6zyrN7cCevii9XXt/HpQAaVdJXoANDV/GPN28dbypLl4XHM7oAcvWtkJaOOflhNQ2lGiB0BT/SuW1i8/Ko/8730vVzrpoquAbv8cfEVAaUeJHgBbHpadLJa7D3WeeNHNCXT1Lyc5gdKuEj0AtjV/zfzqPvs9/4j7kYtu3YW/bdZVQGlHiR4AO/b8Q0f7fp/y8YvefRJp1U0BpR0legDsuvNPbd57J/7wRXcCurifv8yrgNKOEj0A7tj+x94PFvTQRXcDWhVUQGlTiR4A+zQe0mw8237eRe8EdE1AaUeJHgBHVYncfwA9eNF9j5DueagULlaiB8AJHt5/AL3/ogdPoAJKC0r0AOiKgNK1Ej0AOtL40c1dD098QAAOK9EDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAw4qAK1pP1GtX2OLoj/bwLi03qi2r7BNHfwHA5iadT0FFOAsm9OngAKcoXnnXUABTrf12KeAApxq57kjAQU40e5T7wIKcJK7L10SUIBT7Hnlp4ACHLf3lfMCCnDU/h88ElCAI+77wU0BBTjo/p97F1CAQw783hABBbjfwV+7JKAA9zqUTwEFuNfB4+dMQIFM3l/p7X/tSD4FFEjk/bVe/seOHT9nAgok0mdAj+dTQIE83v/+3gp6wvFzJqBAHr0F9LR8CiiQR18BPbWfAgqk0U9AT86ngAKJ9NjPEy/b+v9621fYJgGFzLoP6BnHz5mAApl0ff48K58CCrBy3vFzJqAAtXPzKaAAC2cfP2cCCjC7LJ8CCnBpPwUUmLwL8ymgwORdmk8BBSbu4uPnTECBabsinwIKTNk1x8+ZgAITdl0+BRSYrCuPnzMBBabq6nwKKDBN1x8/ZwIKTFEr+RRQYIJa6qeAAlPTVj4FFJia1vIpoMC0tHf8nAkoMClt5lNAgQlp9fg5E1BgOlrOp4ACU9H28XMmoMDAfaZy/dV0kE8BBYbtM7Urr6aTfgooMGitBLSbfAooMGif+UwLBe0onwIKDFoLAe3q+DlLF9AXn5h/Gh57bv3+y0+XR5894+8LKORyfUC7y2e2gN7Un4rHVx8QUBi3awPa4fFzliygq35uDqECCiPXSj9bXbR19a1fY9tXuFbdf38w//+3m4IKKIzcNQHt9vg5yxXQm/LIM4s35tmsCyqgMHbDzWeqgM5juX7s86YuqIAC+/XQz0wBfempxR34pbqghwNa9uhqHTAk/XzHZw1oVdDHBRTYq6fv97QBrR4HfdJdeOCu3s5LiQLafAx0+W55IKDArv7ubiYKaPXypQeNd198ojzytwIKbOnz4bpMAa1eB/pk4/2Hi8+SgAIbvT7bkSmgi1fQN+/GPxRQoKnnZ4tTBXRR0OYZtDqTCihQ6/vFNrkCWj1z9OTWB24FFFjq/8WKyQJ6LQGFsYp4rbeAAvG+VbnqGkJ+VkZAgXDfql18BUE/aiigQLhrAxr1k9oCCkT71reuKmjcb7oQUCDadQEN/EVBAgpEuyagccfPmYAC8a4IaGQ+BRQYgEv7GXr8nAkoMACXBTQ6nwIKDMEl58/4fgookNIA8imgQEpDyKeAAgkN4vg5E1Agn4HkU0CBbIZy/JwJKJDMcPIpoECPflS56hoGdPycCSjQnx/VLr+GQeVTQIH+XBvQYR0/ZwIK9OZHP7qqoIPLp4ACvbkuoAPsp4ACfbkmoEPMp4ACvbkioIPMp4AC/bm0n8M8fs4EFOjPhQEdaj4FFOjRFfksXey5loACQzbgfAooMGRDPn7OBBQYroHnU0CBnrytctbfGHw/BRToxdtqJ/+F4edTQIF+nBvQBPkUUKAXb3vbWQXNcPycCSjQi/MCmiOfAgr04pyAJjl+zgQU6MUZAU2TTwEF+nFqP/McP2cCCvTjtICmyqeAAj055fyZrJ8CCgxFtnwKKNCL71cOXyRdPgUU6MP3a/dfIt/xcyagQB+OBjRjPgUU6MH3v3+4oCmPnzMBBXpwJKBJ8ymgQA8OBjTr8XMmoEAPDgU0bz4FFOjDvf1MfPycCSjQh3sCmjufAgq07IuVOx/de/7M3k8BBVr1xdrxS6bPp4AC7To5oPnzKaBAq774xdMKOoLj50xAgVadGNBR5FNAgVadFNBxHD9nAgq06pSAjiWfAgq062g/R3P8nAko0K4jAR1TPgUUaMmnKrP7XkhfG1c/BRRoxadqhy4zsnwKKNCOEwI6tnwKKNCKT33qWEFHd/ycCSjQiqMBHWE+BRRoxZGAjvH4ORNQoBWHAzrOfAoocIZvVPb/0YF+jvT4ORNQ4HTfqO37s/sDOtp8CihwukMBnR3OZ+l2WRABBU70jW8cLOg+o86ngAInOz+gI++ngAKnOjegY8+ngAInOzOgo8+ngAKnO6ef4z9+zgQUOMHnK2cFdAr5FFDguM/XDr2Qfsskjp8zAQWOWwf0RBPJp4ACR33+82cVdCrHz5mAAkedFdAJ5VNAgaPOCeik+imgwGEvvHB6QKeVTwEFDnvhhU1Bj112YvkUUOCw0wM6tePnTECBg154YV3QI5ecXj4FFDjohbXDl5vg8XMmoMBBJwZ0kvkUUOCAv64cD+g0j58zAQXu99e1w/2cbD4FFLjfSQGdcD8FFLjPX6/J534CCtxjE9B7LzLpfAoocK+jAZ328XMmoMBdr60cD+jU8ymgwB2vrc0O9nPyx8+ZgAJ3nBRQ+ZwJKLDrta/dLui+yzh+LggosK0R0PvI55KAAtuOBtTxc0VAgS3/VjkQUPncEFCg6d9q+nkCAQWaDgdUPrcIKNDwb2v7/lQ+twko0HAooI6fuwQUaDgQUPm8Q0CBhnsD6vi5h4ACDa853M+ISQMmoMDGa/YH1PFzPwEFNl5TF/Q1r2l8UD7vI6DAxmvWNh/Tz3sJKLBxN6DyeUCigL70VNnn0WfPGdfZOhiFd97Tz8BJQyagwNo7dwLq+HlYooDOXnzizIDuu3hn62AE3lkX9J3vXLzru+aITAFdnEGfPOPyAgqn+kmlCmht5vh5glQBrQr6yDPXXIHbAuz1k1ojoPJ5XK6AVvfiH3vuir/v1gB77QbU8fMkyQI6uy3lwRV/3c0B9vnJT7YLKp+nyRbQ+Z34a46gbhCwz05A9fNE2QJ65RHULQL2+MAmoDNPHp0hXUCv4zYBd31gK6DyeToBhcn7wKagjp9nEVCYug80AiqfZxFQmJ5fV9bvfWBdUMfPMwkoTM6va/W7H1iRz3MJKEzO/oA6fp5PQGFqfv3rfQWVzwsIKEzNvoA6fl5EQGFiflvZCqjXLl1KQGFafltrBFQ/LyWgMC2NgC4/IJ+XE1CYlN/+dlPQxQfk8woCCpPy29/+XWUe0MW7jp9XEVCYlGU/q4RW78nndQQUJqUZUMfPawkoTMrfrTl+Xk9AYfS+UKnfXvfT8bMFAgpj94Xa4h35bJOAwtjtCah+tkNAYeS+8IXdgspnWwQURu5OQOWzNQIKI7cTUMfPFgkojNx2QOWzTQIK4/b61zf66fjZLgGFUftjM6Dy2TIBhTH74zygy4K+/vWOn60TUBizRUCX5LN9Agoj9sc/rgrq+NkFAYWR+WClfnsVUPnshoDCuHywtnjnj8uC6mdHBBTG5W5A5bMzAgqj8sEP7hZUPrsjoDAmH90NqONnlwQURuSjuwGVz04JKIzITkAdPzsmoDAeH/1pZbef0atGTEBhPH5aWwTU8bN7AgrjsQmofPZCQGE0frr2Uf3shYDCaPz0x5V5P+WzJwIKo/Hjmnz2RUBhNLbyWaLXTIGAwlg4fvZOQGEsHD97J6AwFo6fvRNQGIv18fPH0UsmQ0BhHN66zueP/zx6y2QIKIxCo58C2hsBhTFo5vPPBbQvAgrZveMd76jz+edL0YOmQ0AhuXU+V/0U0N4IKCS36udb3/pW+eyZgEJuq+PnO97x1oXoPZMioJDZN9f5rAMaPWhaBBQSK41+Cmj/BBTyqvP5zW+uAho9aGoEFJL6i7Lu56Kg0XumSEAhp2Y+BTSIgEJK2/38pnyGEFBIaCef3/xm9KCJElDIp87nJz6hn7EEFLIp634KaDABhWQ2+VwVNHrRdAkoZPEflbLVz0/8xV9Er5o0AYUkmv38xCcEdAgEFJK4e/ycix41cQIKg/avleqNTT7n7+jnMAgoDNm/1uYBXfXzP2YCOhQCCkO2Dug6n/9RBXQmn4MgoDBgq37+6yafy4AyCAIKw/WW7Xzq59AIKAzXW+4ePwV0SAQUBuk9lbc0j58z+RwcAYUhek9t3c/oQewjoDBEq4AW/RwyAYUB2unnW6L3sJ+AwgBtHz/1c6gEFIbn91v5fIuADpWAwvD8fquf0Wu4l4DC4Pz+9z/05FEKAgqDs+7ne94TPYWDBBQGZ3X8/OHvo5dwmIDCwPxslc+56C0cJqAwLKXRzx9Gj+EwAYVBaeZTQIdOQGFAynY/fxi9h8MEFAZjlc+f6WcSAgpDse6ngGYhoDAMm3z+rC5o9CKOElAYhDqfb3zjz2rRgziBgMIAlHU/BTQTAYVgzz//fJ3PX77xjauCRo/iJAIKsdb5LL/85bKgc9GjOI2AQqxVP2e/FNB0BBRCrY6fzz//y3VBozdxKgGFQKt8fuT5559fHEEr0aM4mYBCnHU/BTQnAYUYb3rTJp8fqQo6m8lnNgIKIdb9/MjS89GDuICAQoiy3U8BTUlAIcJOPj/ykehBXEJAoX+r4+eb3qSfqQko9G6dTwFNTkChZ6vj5/9607qg0ZO4kIBCv1b5rMwDGj2Hawgo9Kk0+ymg2eUL6M3qFlgeP/8vCyihtvM592d/Fj2JayQL6G3Zdm5DBZRId/r5v/Qztz4C+tJTZZ9Hnz33ql984torEVDirG60H/6wgI5FpoC+/PT231pc72PPnTXu7jroR327/+qHmwGNHsV1MgX04Z1cVkl9cNa4u+ugD6ub/VergH5YP0ein8dA5/e9H3lm8VYV0ycvvOabu82dX91ZD4MKKDHqfM6+KqCj0ktA55nbRPPhqqXnmh8376b39rz78AJKhNLo5yKgH5bPcegloDdbx8SbS15/NFtk+MGdDz489EjAvgcOLvqfhmvUt70/nS0CuizoXPQsrtdHQOdHxweNdw827wABJaXVTe9PBXR8enoS6UHj3UsD6i48Ca3y+U//9Kfzgn51U9DoYbShp4A2y3dz5kuPGn/Rk0gks+nn3OoIOhe9i3b09Bho4wh6e/HT8PtfxnTWlQkofdrKp4COUC8BrX6CqD48Nt48294X0p93ZQJKj7bzOTerCxo9jLb08zrQrR9hv/BVTLO9r8g/88oElN6sbqN/shVQRqWnXybycJO8S8+fCzc7/fTLRBiq9cs+BHTEevttTPUvArkqnwt+nR0JbF429ycCOmLJfp3dtQSUXqzzOQ/oxz6mn6MloNC20uingI6agEK7Gvn897mPfawu6Meih9E+AYVW7fRzEdCl6GW0T0ChRVv33gV09AQU2tPM57KfAjpqAgpt2Tp+zv5fpVHQ0Gl0Q0ChJVv5XPazSqiAjpiAQiu2j5+NgP67fI6XgEIbdvK57mdV0LhVdExA4Xq7x08BnQgBhavdyWczoEGb6IOAwpXuHD/f9773vUpAJ0FA4Sp3772/rwroq/RzCgQUrnG3nwI6IQIKl7ubz3+sVAFdFvRVrwrbRg8EFC529/T5j7WqoAtR0+iFgMKF9tx7F9CJEVC4zJ58rvu5KmjMMnojoHCJfcfPrYC+730hu+iVgMIF9uZTQCdHQOFs+4+f733vexsBDRlGzwQUzrQ/n1U/NwV9e8QweiegcJ57+imgUySgcI79+fzyl7/83vduCvr2twvoNAgonGH/6fPLm4DOvV0/J0NA4WT33XsX0KkSUDjVvnx+d+7LuwGNmUf/BBROs/f4+d11QNcFDRlHDAGFk+y/9y6g0yagcIJ7Hv38biOgX5bP6RFQOK6Rz3+prD7+3a2CfjlsH0EEFI4pu/1cJ1RAJ05A4bDte+97A/pd+ZwoAYWDmv383vf+5V/2FzRwIIEEFA7YOn5+T0DZJqBwv+3n3vcEdCafkyagcJ/V8fNDH/pQ9e739gWUSRNQuMcmnx9aJPR7zYJGj2MQBBT2Ktv9FFD2EFDYZ/Xo53+vLAv6vU1Bo9cxEAIKd5Wtfi4TWh9B56LXMRgCCrsar10SUA4RUNixp59VQWd1QYPXMSQCClu2XjrfCGjsKoZJQKFp+6XzAspBAgob2784pBnQwFEMl4DC2k4+Z7P/W6n6+ZdhmxgyAYXa7vGz7ucioQLKPgIKS3fyuQnoX/6lgLKPgELl7vFz08+qoEGzGDYBhf35/OQnGwEN2sXACSjc008B5RgBZfL25XMnoCG7GD4BZer25nP2zxX95DABZdr2Hz+X/RRQjhBQJm1/PlcB/Wf55CABZcLuOX6u+zn3yU/2P4s0BJTpui+fWwHtexSZCChTde/xcyagnEhAmagD+WwGtNdNZCOgTNL6+PmDyu6f/vzn+skpBJQJ2tx7/0Ft+88FlNMIKNPTePTzvoAuC/rzn0fMIw8BZWqaTx794Ad7C/rztYiB5CGgTMwmn6985SvvCehMPzmJgDIpZaufAsp1BJQpab526VBAZ/LJKQSU6Si7/dwUNHYYWQkok7H90nkB5XoCykTs/uTmKxsFDZxFagLKJNz9wfdXroWNIj0BZQr2/OKQ36z6+ZuoUeQnoIzfKp8fr6w+KKBcT0AZvdXp8+O15Ud/syzob34joFxMQBm5zb333YCuhM4jNQFl3DYPfn784/sLGrmO5ASUMVsdP383J6C0TkAZsdXx83f7AjqTT64loIzW5tHP/QGFawkoY7V59PN3v9sqaPQwxkNAGafmS+d/958VAaV1AsoYbf/k0X/W5JOWCSgjtPOTm6uA/u53kaMYIQFldHZ/8P0/1wJHMUoCyths5/MXv/iFgNIVAWVcyp1+CiidEVBGZefeu4DSKQFlRHYf/Vz0c1PQuGGMlIAyFu9+924+BZSOCSgj8e47x8/ZKqC/kE+6IaCMwyqf79766C/WgmYxbgLKKKz7+e79BQ2axcgJKPl9upFPAaVHAkp6n27mcyegM/mkQwJKdqvj56f3BhQ6JKAkt8rnnH7SMwEltdLop4DSNwEls2Y+FwGNHsS0CCh5le1+fjp6D5MjoGS1yudf6SdRBJSk1v0UUMIIKClt8vlXdUGjFzFFAkpGdT7/4R/+4a+WogcxTQJKPmXTz1VCoycxTYkC+tJTZZ9Hnz1nXGfr6M9WPpcBjZ7ERAkoyZSdfi4KGj2KiUoU0NmLTwjotLy6svOx+ss+mzUCGrENZrkCujiDPnnVNQhoJq+uNT5U1v1sBDRoHuQKaFXQR5655goENJO7Ad3kU0AZglwBre7FP/bcFX9fQBN59at3Clqa/dwUNGgepAvo7LaUB1f8dQFNZCegO/kUUAYgW0Dnd+JPP4Lue86pw2205SuVnYDu+QLKJ9GyBfSsI6iA5vSVWiOgvnwMUrqAXsd3YAa7Ad1+8giGQ0AZmq98Zaegjp8MlYAyNDsBdfxkuASUodkEtHrP8ZMBSxvQ24teUu/7cNjeVdkKqHwyZALKcLzrXVsFdfxk6ASU4dgJqHwydALKYLzrXc2COn4yfALKYKwD+q6Ze++kIKAMRjOg8kkGAspQ/GoTUMdPchBQhuJXv9rpZ/QgOEZAGYhfrQLq+EkaaQN6Gd+Vw/WruqDySR4CykD8asHxk0wElECfrdRvyyf5CChxPltbvqefpCOgxNkOqHySjoAS5rOfbRZUPslHQAnTDKjjJxkJKGEaAZVPUhJQevS6yvq9dT8dP0lKQOnP62qr97f7GTgMLiOg9GdvQB0/yUtA6c3rXrenoPJJYgJKb+4G1JPv5Cag9OZOQOWT5ASU3uwGVD/JTkDp3psrs50nkeST/ASUzr25thVQ+WQEBJTOrQM6281nCV4G1xFQuvbmN28KWpNPxkFA6dqdgDp+MhYCStd2AyqfjIaA0rXtgDp+MiICSje+U1m+2einfDIqAkonvlOr3t4EVD8ZFwGlE82AzuSTkRJQuvCd72wVdEE+GR0BpQt3A+r4yQgJKF24E1D5ZIwElC7sBNTxk3ESUDqxr5+xi6B9AkoHvva1RkAdPxktAaV9X/taXdDqHflkvASU9n2tNnP8ZNwElNZ9bU0+GTcBpXX6yVQIKK2TT6ZCQGndVj+jx0CHBJT2OX4yEQLKUa+onPMXHD+ZCAHlmFfUTv8bjp9MhIByzNkBlU+mQkA54hWvOK+gjp9Mh4ByxHkBlU+mREA54qyA6ieTIqAccUZA5ZOJEVCOObef3S+CgRBQjjkxoI6fTI+ActRJ50/5ZIIElMO+Xjl6KcdPJklAOejrtcOXkk+mSUA56JSAOn4yVQLKIV//+tGCyifTJaAccjyg+smECSiHHAuofDJpAsohRwIqn0ybgHLQoX46fjJ1AspBBwIqn0yegHLYkXyWvvfAgAgoF5FPENCxe0Ol/at1/ISKgI7aG2otX618woKAjlonAXX8hJqAjtkb3tB+QeUT1gR0zDoIqH7ChoCOWesBlU9oEtAxazug8glbBHTUWu2n4yfsENBRazOg8gm7BHTc2s5naeO6YCwElFPIJ+whoBzn+Al7CSjHyCfcQ0DH4tuVLq5YP+E+AjoS3661fb3yCfcT0JHoKKDyCQcI6Dh8+9tdFNTxEw4S0HHoJKDyCYcJ6Dh0EFDHTzhGQMeh/YDKJxwloCPRcj8dP+EEAjoS7QZUPuEUAjoW7eeztHNtMF4Cyg75hFMJKNv0E04moDTJJ5xBQGmQTziHgLLm+AnnEdCB+FwldoJ8wpkEdBg+V4tb4PgJZxPQYQgPqHzC+QR0ED73udiCOn7CJQR0EGIDKp9wGQEdhNCA6idcSEAHITCg8gkXE9BhiO5n7/+7MAbJAvriE/Nv9seeW7//8tPl0WfP+PuDLUVQQB0/4Rq5AnpTf78/vvrAaAIa80J6+YSrpAroqp+bQ+h4AhrA8ROulCmg1f33B/P/f7spqIBeTj7hWpkCelMeeWbxxjybdUEF9FKOn3C9RAGdx3L92OdNXVABvYx8QhsSBfSlpxZ34JfqggroRfQTWpE1oFVBHxfQi8gntCRtQKvHQZ8U0AvIJ7QlUUCbj4Eu3y0PBPRcjp/QnkQBrV6+9KDx7otPlEf+VkDPI5/QokwBrV4H+mTj/YeLFhwIaNmjs3UZ+CRAqzIFdPEK+ubd+IcCehafAmhXqoAuCto8g1Zn0h7vwij0m30AAApFSURBVP+hcs0VhPKfEGhbroBWzxw9ufWB2x4D+ofaFVcRSD6hdckCeq3JBtTxEzogoCf7wx/SFlQ+oRNpA3q7+s0iZ5lmQPUTuiGgJ8saUPmErgjoyZIGVD6hMwJ6uoz9dPyEDgno6RIGVD6hSwJ6hqT5LNE7YKwEdLzkEzomoGPl+AmdE9Bxkk/oQdqAXmYqRdFP6IOAjpB8Qj8EdHzkE3oioGPj+Am9EdCRkU/oj4COiuMn9ElAx0Q+oVcCOh6On9AzAR0L+YTeCehI6Cf0T0BHQT4hgoCOgXxCCAHNz/ETgghoevIJUQQ0OcdPiCOgucknBBLQzBw/IZSAJiafEEtA03L8hGgCmpR8QjwB3edLlW6XXEk/YQAEdI8v1Toeczn5hEEQ0D2GHlD5hGEQ0Lu+9KVBF9TxE4ZCQO8adkDlEwZDQO8ackAdP2FABPSuAQdUPmFIBHSPofbT8ROGRUD3GGZA5ROGRkD3GWA+9ROGR0BzkE8YIAFNQT5hiAQ0AcdPGCYBHT75hIES0KFz/ITBEtCBk08YLgEdNMdPGDIBHTL5hEET0OFy/ISBE9Chkk8YPAEdKP2E4RPQQZJPyEBAh0g+IQUBHR7HT0hCQAdHPiELAR0Yx0/IQ0CHRT4hkckFFKA9rTeq7StsU/QnGxiX1hvV9hUOTeY72Im3J56eeXvi6Um3l+gBXcv5ZVlKvD3x9MzbE09Pur1ED+hazi/LUuLtiadn3p54etLtJXpA13J+WZYSb088PfP2xNOTbi/RA7qW88uylHh74umZtyeennR7iR7QtZxflqXE2xNPz7w98fSk20v0gK7l/LIsJd6eeHrm7YmnJ91eogd0LeeXZSnx9sTTM29PPD3p9hI9oGs5vyxLibcnnp55e+LpSbeX6AFdy/llWUq8PfH0zNsTT0+6vUQP6FrOL8tS4u2Jp2fennh60u0lekDXcn5ZlhJvTzw98/bE05NuL9EDupbzy7KUeHvi6Zm3J56edHuJHtC1nF+WpcTbE0/PvD3x9KTbS/SAruX8siwl3p54eubtiacn3V6iB3Qt55dlKfH2xNMzb088Pen2Ej2gazm/LEuJtyeennl74ulJt5foAV3L+WVZSrw98fTM2xNPT7q9RA/oWs4vy1Li7YmnZ96eeHrS7SV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6QPdefKLMPRk94yLL7Y88E73jQi899eiz0RvO9NJTeW8ts5Sf8YW0N/QSPaBrLz9dag+ip5xt+c1cyfldMf/cZxt+U3/CE34rVxJ+xiuJb+glekDHNv3MV9DNzSrhDatyk273be5PeMLPeCXzDb1ED+jYbX1/rPoaPfZc9JrzrLYvjkWPR6852+K/Xbm+H6o7ktWt5GHKT3jGz/hC5ht6iR7QrflNqr4zNi9osrtlVfMfLN+8Tfh9sXxUK9fsm9X373x8slvLLOdnvJL6hl6iB3Rrfpta/RftNtt9+Ieb/xpXR4sHkVvOtrhX9t+SPSI3H73ae5vuiaSUn/GF1Df0Ej2gNzfZvjTN7+GM48uDbE9pNP5zO38z2SM+KT/jC6lv6CV6QF8ap4uEbrLdo7ytUpTt27nxnZxtetLP+B3pbuglekBPbhM+C78xr3+y89BCtm/nxqM8mwfPU8n2Gd+V74Zeogf04Sblq5ga8j0it5Dt27l5/zHdUWgh22d8V74beoke0IfsAc33gNxStm/nZjQFNEDCG3qJHtCD1Yvps31tVuY3q5zfFdm+nbcDmvG/uNk+49sy3tBL9IC+VK/ySPYa3drDdK+NW8n27ewEGirlDb1ED2jf+gfDtr8DUrySfs/2LDerPdOzfTsLaKQsN/RtJXpA++4JaIoHqO9uv8ny0MMIAupZ+EBpbujbSvSA9t0X0IcJA1o9fJvkgYcRBPRh5teBLiSdneqGvq1ED+hPhoDuqH66Odvmhmzfzql/Emkh22d8Je8NvUQP6FbqnxLL+SstGrJ9O6f+WfiFbJ/xWuIbeoke0K3GCyPyvUYixdNeh6T7ds7925hmCT/jC5lv6CV6QLeqh1aWt6j17xxMI99vptmV7ts5+e8DTfgZr6S+oZfoAR1b/o7EpWTfEg/LlgfRe86X79s5+2+kz/cZnyW/oZfoAV3b/HMByfrZ/MdI8t2uFhJ+O/s3kXqX+4Zeogd0b3kITfecavMfisl3u1rI+O2c+1/lzPsZz3pDL9EDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDALIq0QMAsirRAwCyKtEDoD0vPVUeey56BBNSogdAewSUfpXoAdAeAaVfJXoAtEdA6VeJHgDtEVD6VaIHQHsElH6V6AFwmZt5Kx+WUh55ZrYoZymPCyg9K9ED4DLzgP59qQN6WxYe+z8CSq9K9AC4zE35L0+Uxblz1c9S/quA0qsSPQAuc1MdORe1rO6/V289LOsPQS9K9AC4zM06lrert158QkDpVYkeAJeZB/TJxRsvP718ImnWSCn0okQPgMvMA/pg8cb8Hvyjzy4/Nj+CCig9KtED4DI3q3Nn47VLXsZEv0r0ALjMOqCNY6eA0q8SPQAu4wRKvBI9AC7TDKjHQIlRogfAZdYBffnp1dNJnoWnZyV6AFzm5u6Ll1avqIeelOgBcJlNQKtuVnfiq9fRCyh9KtED4DKbgC5/hrPyPzyJRK9K9AC4TCOgq4L6bUz0rEQPgMs0A7p4IsnvA6V3JXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFYlegBAViV6AEBWJXoAQFb/H7kEWf62FABZAAAAAElFTkSuQmCC" title alt width="672" />
第二次模拟1000个随机数
n=1000
rd=rnorm(n)
plot(density(rd),main = "正态随机变量概率密度",lwd=2)
points(rd,rep(0.01,n),pch=20,col=rainbow(n))
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABUAAAAPACAMAAADDuCPrAAAC/VBMVEUAAAAAAFQAAIAABP8ADf8ANf8AVFQAVIAAVKYAdf8AgIAAgKYAgMYAgP8AmP8Arv8Ar/8Auv8A3P8A5/8A9v8A/0oA/2AA/2sA/4MA/4UA/5cA/7EA/8gA/8kA/9oA/+4A//kFAP8LAP8OAP8QAP8ZAP8lAP8zAP87AP8+AP9C/wBLAP9P/wBSAP9S/wBUAABUAFRUAIBUVABUVFRUgIBUpqZUpsZUpuNWAP9cAP9nAP9vAP91AP92AP95AP98AP+AAACAAP+AVACAVKaAgFSAgICApqaAxuOAxv+BAP+EAP+MAP+QAP+Q/wCdAP+jAP+mVACmgACmplSmpoCmpuOmxqam48am4+Om4/+nAP+qAP+q/wCsAP+tAP+0AP+3AP+9AP++vr7AAP/BAP/GAP/GgADGplTGxoDG46bG/8bG/+PG///RAP/XAP/aAP/bAP/hAP/jplTjxoDj46bj/8bj///oAP/yAP/6/wD+AP//AAL/AAP/AAX/AAb/AAj/AAn/AAv/AAz/AA7/AA//ABH/ABL/ABT/ABX/ABf/ABj/ABr/ABz/AB3/AB//ACD/ACL/ACP/ACX/ACb/ACj/ACn/ACv/ACz/AC7/AC//ADH/ADL/ADT/ADb/ADf/ADn/ADr/ADz/AD3/AD//AED/AEX/AEb/AEj/AEn/AEz/AE7/AFD/AFH/AFT/AFn/AFz/AF3/AF//AGD/AGP/AGX/AGr/AGv/AG3/AG7/AHD/AHH/AHP/AHT/AHf/AHn/AHr/AHz/AH3/AH//AIH/AIL/AIX/AIj/AIr/AI3/AI7/AJD/AJH/AJP/AJT/AJb/AJf/AJn/AJv/AJ7/AKH/AKL/AKT/AKX/AKf/AKj/AKv/AK3/AK7/ALD/ALP/ALX/ALn/ALv/ALz/AL//AMH/AML/AMf/AMj/AMr/AMv/AND/ANL/ANP/ANX/ANb/ANz/AN7/AOb/AOr/APD/APX/APv/AP7/DgD/jgD/mwD/uwD/xoD/46b/8wD//8b//+P////nIodiAAAACXBIWXMAAB2HAAAdhwGP5fFlAAAgAElEQVR4nO3dCZgk713Q8d4VcJVRYxQxiBhFjURwMAqDGs2qQYYjuoLKgkG8OkI2CI2s0XhgiCEmIEeCoEgMKEo0HAZEoxKIQfDgCB5BAgoYFDHEAzVAD7v9WG/VW1XvW1XdXfWr6/297/fzPJD/zvT0VNfxnbeOrt4cAAAim7UnAAC0IqAAIERAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCqFHd28/GPDw7ea680k6v3zMzeWt+6e+v2s92+N77V+wPf0kTX2ncb+56PV8282dh0N+PwJGQHHGzWX39n5zudn0TMYhD9mmo1tZnLq+fNR+szmV7d2mS3P6t8N+Z/5KeyTUvMQ+pTWP6z3fEDYCitNMPTqbdTwrdii2d79vStnx6L7RqWTxO/ED2a+88r+S/d7W1G+H9TPvcp+f2PcMs5kXDELjQEBhmJCd0tGs47nY1z935XytaMbje27i6oDWO8q7U4k02a7jk/2QF8whAX18L3+enTMabP949STON3buE+6deXDkj0SbG+TH9wbWHCEhoGjrqk7L8b3pfb6L6g8ut/Yf5qtOpLyAbjrC2+IOH/OfcR86LKC99vftT9Rf3nmPcY+6Zs/o/K7sX/Xjsu47ac3+dVU/auh4GAEhoGjrFVA/JFm7qn8VAc0q8dN/27U7HK3UYz4voEVIGnv129NDYz95Xb/sRECz72S/tpiabHKdA5P5Ad7jnPFjv0nz/zy0HP97gbARULT1CujWOxWyd3JRBDQL7NW2fMixnePzAe148P7oIcSBI1A3oPvjZ3aqx7T5I0vPzi2j8+qqp9pyJkk/Aoq2IwHtPsfdHpgVLdpmz1EO6/ydW0ddy+y/Vgvoo7t3Hp4I6HZz9Bdu62ndly+/uHIqe2LnZ7w/D/ZxZnbSUOUIKNr6jEBNEp7WffQub1ExbLPDVOegny9vYv7rzgT05v3v9whoZ+JbL2W3ufXMzeZD6oBmk3froxrtrceH9mDvza99UPzwhftMzgHMckheXCXlPa5zfL3jXLx+BBRtfQJqKvYnui8RzQNaXMS0K+JTnYSphmmto4cfcjqgZqjnBvQ5nUXedY1Anco3fmkZUDNwbQ5eq4sM7MywgTcHM6t5U10S8Ohu9j17XVd+0DabNd7gsp6M+iRYMbE3lxwAVYyAoq1PQLdm8992ZiwP6C5PSzFY9M/tuD9SX0x6egSaP8MHuiPQdisP+djy2JVV3snyxi68+bHWxVP7TXkxgb3cyRQ1L3D7d+Rfftd88rad54SOBtTMAAqqFwFFW4+AZht+9pDucygmoFlSrvJnyurjH/drjvP6BLQY9/m78D3fH1T+Wu/iJ+8ypov8cG376tOdLeaFfb32kERX7oqJ3+VP1TlVp8/CsyevFgFFZeucET8XUFuSziGfCejNZf0Mu83RgO76BXSb7zc3joG6bwPtvH6poXxSc8TTG4Hmo9Bt12+9/cf8n991zBfzVtdy4ss/FdWLKR3fhYdqBBSV3aY6pHcuoNVV9F1vizQBdW41st/c+d1HApqPAs8H1P625kmk/KeHn8feFTvZdUDzU1wdL+Tm8iL/FXkgi8Ob7d+W7+LbiXfeJrXzT14R0EgRUFSqLdoJaL4P3lLvPvvvcizkx0Cre5Ds8+Fdd0CL69Xzr5wIaDk5rbPwNm/OA7sGiM2vFZfmX9UB3RUnqDoPn+7zpz/x7vmdebHlLrwdlpsH+/vyBDRSBBSVjoB23/ciP6Jnv+ydli6UF9JfHMo3KLlvJ2q89bI8CHg8oNVFpO3LmJwRbPXPEzvv1QTfelr+f0VA3+WyOL56+8Gxa0FP9LM4Z2Qm/vdVM2Jbnq733rRvZxIBjQoBRcUNqKtZj/zM8bbMhVvTQtGh6kmyHz82As3D+iF5BY8HdFu2p+M6UP/+HfUwsr6MvfPsel678jImn/fHYGcvwjKBLc6ZNZq3q+rvhLq49al3mWdxzs2bRAIaAwKKStcufPfDTAOqN9L49ThU74rcFeksEtQZ0KJe+fWdt597LKD1jTy8gGZJMl/37lbaK6DFKS3nkvs7n1pcTtQafNrL/4uXUDwgP+bQPsuezwLnbZsXB3ttqPNUzlGHztE4NCKgqPQKaH3Qs34rYnUOvIjEvnr70cXpgO5tec347FhAd8Uhxk7NoXGfgObRvnU//598BHr7QXvCDgf3ZH3xTLvqSoDmIzsuAWge9nAP2zICjQgBRaVHQL270W3rHd7iIGd95xAb0DsPTwXUxORp9vKgO5/WfTORnXtLUSdL/n1BnSc8F9Bs4n6dedS+OAbqvBbvcfbmKI02XhSPdH9xcWP+3el+1rcq8W+HCu0IKCpnA9q4M7t3vwznilBbi/xZyoB27bZm7fnAe87pfP9UUZvzvqfuk1tHRqqNI6r2oipz2ui59+rgbtwzSOUVXeUzFockypd14Tyq31Xw3aPNrstKoQoBReVMQP13i++OX4HZFdCuEegu33G3fXNPsxwJaP2RcvlR0/YUHhmBNi6cunbuxlTe0n7v9/Ng34maXwtavg2pPKhZvS20+Tb29kfaOd+ydwY4XXdoQ0BR6XkS6VC8TXN7dPBlA5pf/n4ioCZedS29izuPVKUasR35WLgeAd1WV6UWV0ftnbPoR/8iVKeATtsdH4/WFy8578o//flO0ICAotIroNur8urLevvf+92oDxyePIm0q9/i437nREDLEzrHPlbzyC68d96/uqjKXl66LW/p0T+g9tOUyhni3om/uuDKD6lzP9T6M5D29FM/AopKn4Dad36bBzrvRW+dXL/Ij3qevIwpb1ldy+q96CcCaq8lOvohmfX7fdwRqPtSdsXY2d2FL8bJmw84ftv5RkDNBDr/rG+/VF+H3/ykI/docfnWKO7DFAMCikqfgG6dYaMzhNq6xyTt3Ziqi9C7A7qzb0gvnqL+lfZLj+529WxfnPE+8sagR3evq//q3JnOj2g6Af3Iza2Pzv7nEy43tz/RCeiZTzDabNxXW9+gyQ9o48hr/c99/sNd74GFOgQUlR4BLYaAdrRY7gRnOXLvjOR9vJATUPtBbVflM5Vnua/tz9hvVAHtPJy48+t1jDfke/8qt/v8J51P5czfwW4uBbg68cFHp4+B1rdx8gLqNX7v/XNrb83H53noR0BROR9QO7Lyb/2Wv/W7/aFy9pvuCHS/qTO78+4P4h0kzL900323+yPn35ucgLY/fnlb3Vu+mJj8TZf2I0g6n3t0QLf+z3tXzUIzAorK+YDa80aNgJp/uGFzAmp3VMu3s++bhzedowFX/pfad1GyT9A4LeRN/jH+Ln89As0npriAyga08+DA2ICWF0u5r5p+RoGAotIdUCd62015YNMPaHFr5SoJdUiyB75Lx5vMa7Zi1fsl6y/tOw505scmr3c9Lp88cgy0nKr8qR/dvbIPtQNSWUB35wO6b/w92rajDp0IKCqdAd3Xuap2er2A2g+9cK7cKUNSDT+Pny2xtXRvbF/dvLhrtFpeoX9uBNcIqH+jUG/yyzP3eUDtB5E0jQ2o/9FR+dGO5xwdSEMTAgr/nZbdLpqP996Q2RhMVXdjsj/X2reua1bcjs7/aKVqarynzatZ/lZ7Pur4wdDWp7I3Ljy6dr5V3ZUvPxDa9ZynAnrswIEz8V6+y4PF9ppVxqG6EVAM14qGn4F9FU7nyqTuB+cBzf6fO9a0dfQet2vm0r3S6Pr4rZQddQKdgNaDxuoJuz8l7/gIdN/xPX8EuvOO7/r/aE4bdCGgEGgMWTvvSN9QZtHfcTXZ+uAzw7DmB3eUdtL4uNfs+x99193P0wHt4h7TrS7I8sbQ1RNvOJ2kGQHF5Hb9D+55dx3ufsCp3dxTF28eV16r1HWeqlPvB3aqPiKp+4jDnjsyKUZAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFAKGwA7oBgMlMn6jJn3FCa89tAHGZvFFTP+GUZviDASBZBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCgBCBBQAhAgoAAgRUAAQIqAAIERAAUCIgAKAEAEFACECCgBCegP66O7mavAPEVAA0yGgACBEQIE+Zvj0G+inKKBZMbvcfjBk4tgIMNSsHyEG3QgocMrsn8IIzRQF9LAnoFjYIh9kC700BTQfg955WP+DY6CYlZ9NEooWVQE9HLabza37xX8SUMyrK5cUFB5lAT3cXG5sNwko5nRstElB4dAW0MPje3Y3noBiPqd21ikoKuoCejjssrX3moBiPmeOdVJQlBQGNN+NvyCgmMn5U0UUFJbGgOa78bc/kYBiDn3OE1FQFFQGtNiN3xBQTK/fSSIKipzSgOa78QQUU+t9jp2CwtAa0PySUAKKaQ24RomC4qA5oCKs8Thh0DWeBBQEFKgMHFRSUBBQwBq8U05BQUABQ/AWTQIK5QG9uTx1O7tNhwUnDoqIVg/WqOQRUEB8ixBWqdRFHdA21nZ0kf5xJaCpUx7QoVjb0UG+c0JBE0dAkbwxB3coaNoIKJI3JoIENG0EFKkb10AKmjR9Ad1WJ9Qvhv8wqzqaxhaQgKZMWUB3jYuShjaUVR0No69uYwiaMlUBze9h5xt0ERMBRdMEVwcT0IRpCqi5Eb1bTPMx8fXnxPfCmg7PFO+uYAiaME0B3bdyaZJ6PeQpWNHhmubdaQQ0XZoCum3vsGeD0EGHQVnR4Zpm8MgQNF2KApoNN9u3oN8N24dnPYdjqvIR0GQpCmg22mzvru95LzykJhs5MgRNFgFFsqbrHgFNlaKAsguPSU04biSgqVIUUE4iYUpT7nezD58qTQHtvoxp0Gcbs5ajNGn0CGiiNAW080L6YW9FYi2HNe2gkSFoojQFtCim79b9Qc/ASo7C1MUjoGlSFVD3VkzcTARjzBFQVq70KAvogdvZYQrT946AJklfQEdhHYcxw3iRIWiSCCgSNEftCGiKCCjSM8tokYCmiIAiOfPsbbMPnyICiuTMlDoCmiACitTMNVRkCJogAorEzNc5ApoeAorEEFBMh4AiLTPuaLMPnx4CirTMGTkCmhwCiqTMOkpkCJocAoqkzJs4ApoaAoqUzDxGJKCpIaBIycyFYx8+NQQUCZk9cAQ0MQQUCZm9bwxBE0NAkY4F8kZA00JAkYwlhocENC0EFMlYKqCsZOkgoEjFMm0joEkhoEjFMmkjoEkhoEjEQjvX7MMnhYAiEUuFjYCmhIAiDYuNDAloSggo0rBY19iHTwkBRRIWzBoBTQgBRRIWrBpD0IQQUCRhyagR0HQQUKRg0VEhAU0HAUUKFm0a+/DpIKBIwMJJI6DJIKBIwMJFI6DJIKCI39L71OzDJ4OAIn6L94yApoKAInrLDwgJaCoIKKK3fM7Yh08FAUXs1qgZAU0EAUXs1ogZQ9BEEFBEbp2WEdA0EFBEbp2UEdA0EFBEbr2AsrLFj4AibmuVjIAmgYAibmuFjIAmgYAiaqvtSrMPnwQCiqitlzECmgICipitOA4koCkgoIjZihVjHz4FBBQRWzViBDQBBBQRW7VhBDQBBBQRWz2grG+RI6CI18oJI6DxI6CI18oFI6DxI6CI1tr70Gv/fsyPgCJaq/dr9QnA3AgoorV6v1afAMyNgCJW6+9Brz8FmBkBRawCqFcAk4BZEVBEKoThXwCTgFkRUEQqhHiFEHHMiYAiUkG0K4iJwHwIKOIUxuAvjKnAbAgo4hRIuQKZDMyEgCJKoQz9ApkMzISAIkqhhCuUkGMeBBQxCqdbwUwI5kBAEaNwshXOlGAGBBQRCmcAGtKkYHoEFBEKKVohTQumRkARoZCiFdK0YGoEFPEJarc5qInBxAgo4hNWssKaGkyKgCI+YSUrrKnBpAgoohPYTnNgk4MpEVBEJ7RghTY9mA4BRXRCC1Zo04PpEFDEJrhd5uAmCJMhoIhNeLkKb4owEQKKyAQ43gtwkjANAorIhBirEKcJUyCgiEyIsQpxmjAFAoq4BLm7HOREYQIEFHEJM1VhThVGI6CISqBjvUAnC2MRUEQl1FCFOl0Yh4AiKqGGKtTpwjgEFDEJdlc52AnDKAQUMQk3U+FOGUYgoIhIwOO8cKcMIxBQRCTgSgXcdsgRUEQk5EiFPG2QIqCIR9CjvJCnDVIEFPEIulFB1x1CBBTRCDxRYU8dRLQG9PE9szpeDf0x1uCYBV6owPsOCWUB3Wer4J2Hxf8atx8M+3lW4JiFHqjQpw/DqQpoMezc3Lp/c7mRFZQVOGLBj/BCnz4MpyqgW1vNO8+x5dwW49H+WIEjFnyfgi88BtMU0GzcabK522yqbma78tdDnoL1N14K8hT+FGIgTQHd2R32rdmLL76U7dRfDHkK1t94KaiTgsZjGEUBzWJZnHXPRqLVjvtu2D48q2+8NMRJwzRiCEUBfXTX7q67w879sNNIrL7RUjG6UzGRGEBjQLN9eAKKBh1p0jGV6E1XQO2F81t3F56AwtCRJoagkVEU0GzPvX28c8tJJBhayqRkMtGTooCa65ea1yztB76dk5U3VlrCpGU60Y+mgGb78P5403xh2FuRWHljpSVMWkbK6EdTQIt3wNeD0K3/zz5YdyOlp0tqJhR9qAqoKWh5Cf2heEvSsH4S0FjpyZKe1KMHXQHNRp3OLvtu2Akkg1U3TpqqpGhScZa2gI7EqhsnTVHSNK04h4AiApqipGm0jHMIKPTT1SRVE4vTCCj005UkXbnHScoDam8ResSmw4ITh4VoW7DKJhcnEFCop225siLGI+qAtrHexkhdj9RNMI5RHtChWG8jpG9Ap2+KcQQBhXYKa6RwktGJgEI5jcM5jdOMLgQUyqlskcqJRpu+gJYfDr8Z/k54AhojlS1iCBoJZQHdNS5KGtpQVtroKE2RzqlGk6qA3ly2Luscdj9lAhofpSVS2n00aAro43t+Mc0N6Yd9LDwBjY7aEGmdbng0BXTfyqVJ6qBbKrPOxkZth9SWHy5NAd22d9izQSifypk0vRnSO+WoKQpoNtxsfwLnbtg+PKtsZBSP4xRPOiqKApqNNtu763veC580zRHSPO2wCCgUUz2KUz3xKCgKKLvwaNKdIAqqn6KAchIJTboLRED10xTQ7suY2qPSE1hfo6K9QNqnH6oC2nkh/bC3IrG6RkV9f9S/gORpCmhRTN+t+4OegdU1JvoHcPpfQepUBdS9FRM3E0EE9YngJaRNWUAP3M4OlQjqwxBUOX0BHYWVNSJRxCeKF5EwAgqtokgPAdWNgEKpSNITyctIFQGFUrGEh4JqRkChVCzdIaCaEVDoFE934nklCSKg0Cmi6lBQvQgoVIopOjG9ltQQUKgUVXMoqFoEFCrFlRwKqhUBhUaRFSeyl5MQAgqNYgsOBVWKgEKh+HoT3ytKAwGFQvHVhoDqREChUIS1oaAqEVDoE2VsonxR0SOg0CfK1BBQjQgo1Ik0NZG+rLgRUKgTa2goqD4EFOrE2hkCqg8BhTbxdibeVxYtAgptIq4MBdWGgEKZmCMT82uLEwGFMlE3hoIqQ0ChS+SJifzlRYeAQpfIA7OhoKoQUKgSfV8oqCoEFKrEXxcCqgkBhSoJ1IWCKkJAoUkScUniRUaCgEKTJNLCYVA9CCgUSaQsFFQNAgpFUukKAdWCgEKPdLqSzitVjoBCj4SqQkF1IKBQI6WocBhUBwIKNZJKCgVVgYBCi8SKktjLVYqAQovUgkJBFSCgUCK9nqT3ivUhoFAivZoQ0PARUCiRYE0oaPAIKHRIMiZJvmhVCCh0SDIlXMsUOgIKFRItCQUNHAGFCql2hICGjYBCg3Q7ku4rV4GAQoOEK0JBQ0ZAoUDKEUn5tYePgEKBpBtCQQNGQBG+xBOS+MsPGgFF8FIPCNcyhYuAInjJ94OCBouAInTUg1kQrCUC+ui3P5z6l0ixFipEPChosBYJ6N3N5mLqXyPDSqgP7TCYC2FaKqCZq6l/kwDroD6UwyCgYVrmGOiuOAq+uZ76lw3FOqgO5SgwH4K02EmkbZHQ2w+m/n2DsAqqQzcsChqiBc/CP75XNPTOiqeUWAO1IRsl5kSIlr2MyR4NXe+UEmugNlSjQkEDtPh1oHYceuv+1L+3F1ZAZYiGg5kRnoUDWp5NWmsUyvqnC8lwMTfCs2RAd9V5pHwYusZlTax/upAMD7MjOIsFtHEl06O7q5yQZ/VThWA0MD9Cs+x1oM6gc0tAcQ69aOAvSmgWfCeSd/lSthO/xuVMrH2akIsW5khglgroSmfdm1j7NKEWLfxNCcwyAV39LZwlVj5FiEUHZkpYuB8oAkUqujBXwrLMCNTbgd+u+GZO1j09SEUnZktQVgnoencUYdVTg1AcwXwJyfIBXekK0AKrnhb08xjmTEhmDqjz1k0Hu/A4h0wcxZwJyMwBLW+/5Fvv3vSseUrQz+OYNwGZexd+H1Q/CagSNOIU5k44VjiJtCbWOx1IxCnMnXAQUISHQpzG/AkGF9IjPPThDGZQKAgogsMA6xzmUCjmDag5CX/dPhXPdaA4hTqcxSwKBAFFaBhencc8CgQBRWBoQx/MpDBwDBSBIaB9MJfCQEARFsrQD7MpCAQUQaGfPTGjgrBsQG8u17yTyIGAho8u9MWMCsFCAX1013TT9HPdj0dilQsc/eyNWRWCZQK6z8+8P7639kl4Aho4ojAA8yoAiwTUjDyzcWf2P1k7d9zODkdsCOgAzKwALBLQrJkXxf+YdG7zf6yDFS5k9HMY5tb6lghotutujoBm/5Mf/txzIT060c9hmF3rW+Z2dpvrQ/1hSAQUnejnQMyw9S0Y0H2xI09A0YkcDMYcW92CAd1u8v857EZcCppfCOX8+ON7w2rM+hYuAjoYs2x1Cx0DvaoPgWY5FZ9E2tq7kVRPQECjQQwEmGdrW+Qs/Nakc1cMHc0Y8lr41GU/60EoAY0F/ZRgrq1tsetAjeuigdI9+LK9u/o5CGgsSIEIc21ly7wTaVcNG3cj3oi0Ld8Fat7SVBSUgEaCfsow31a20Hvh95vqFLx0/93Esjr2ubUFJaBxoANSzLh1KbqdnT2ZX7AFJaBxIKBSzLh1aQ2oKegFAY0E/RRj1q1LbUDNcdArAhoFIjAC825VCwW0PA8/5n527jHQ4p+bawIaAwI6AjNvVUuehR8ZUPMs7hmoLMq3PpqA6kcCRmHurWmRgO43kwTUDGPdW4nuhz8Zq1p46Oc4zL41LfROpGnuH7Lz3sZpC0pAddsQ0HGYf2ta6L3wE91/yRTUHYOaMSkBVY1+jsYMXNFCd2Oa6kM8ivuSOHYEVDf6ORqzcEXKAjoWK1pg2PgnwDxcz3K3swsCK1pY6OcUmInrWehD5eS3UJ4WK1pYCOgUmIvrWSSg4ezDs54FhS1/GszG1SxzIf3N5Uxj0OKj5o9OSoc5pgIyLJCJMCNXs9BJpEkupO9AQDVjgUyFGbmWqAPaMXGsZuGgn5NhTq5FeUCHYjULB/2cDvNyLYpuZzcF1rJwsNFPiHm5EgKKddDPKTE3V0JAsQq2+GkxO9exWEDNgVDz6fCjL2eqPxz+4vyDm1jJAsElERNjdq5joYAW55FMQDfyj+U8tO7MPLihrGRhoJ9TY4auY5mA2vPwWUDN+FFcUP+DQSQn9FnHwsDmPjnm6CoWCaj5+KI7D28us4COubmyeRr3h/MsDzskwDoWBPo5PebpKpb6SI8rM340ATV74cI3xu9bucw/WG7QxLGKBYBtfQ7M1DUs9JEeJnw2oFn0hCeStu2xazYIHXQYlFUsBAR0DszUNSx4P1Ab0KE3kW8+jW/gnfJYxQJAP2fBbF3DQm/lNPvZZUD3woDap/ENfDLWsPWxoc+E+boCAoqFEdCZMGNXsMIu/FZ4DJRd+Ciwmc+GObu8hU4imWGiDejQ8z7Np/FwEkkb+jkfZu3ylrqM6aIM6OArj7yn6biMadA1UaxgK+MtSDNi3i5vmXci5VfP5wHdDb72vdZ5If2w46msX+uin7Ni5i5u0bdyit59eexpNuW7QwdNHOvXqujnrJi7i1voZiL54HFsPw/urZgK3ExEFfo5L+bv4ha7nZ1N6PhP8+B2dmqxfc+NGbw0bqiMxRDQuTGDl0ZAsRT6OTtm8dIWu52ddKd7Wqxd62HjXgDzeGELBNS/i/yY+9GPx9q1HgK6AObxwmYPqHP+vTD6Q5HGYO1aDf1cAnN5YXMHtOhnOezcrV1QVq61sGUvg9m8rLkD2vwMpP26R0JZudZCQJfBbF7WzAG9uWy+V6j9lSWxcq2Efi6EGb2smQPa8QFI8s9EmgDr1jrYrBfDnF7UvAF9fG/8Hegmxbq1ig0BXQyzelGzB7R1ykj+oXITYNVaA/1cEvN6SfMGtHO02XFf5MWwaq2Bfi6Jmb0kAoq50W09hVMAABt0SURBVM9FMbuXREAxMzbohTG/F0RAMTMCujDm94IIKOZFP5fGHF8QAcWs2JqXxyxfDgHFrAjo8pjly5k9oF0IaDLo5wqY6cshoJgRm/IqmOuLIaCYEQFdBXN9MXwmEuZDP9fBfF8MAcVs2I7XwoxfCgHFXDYEdC3M+KUQUMyEfq6HWb8UAoqZsBGviHm/EAKKedDPNTHzF0JAMQv6uSpm/0IIKGbBFrwuZv8yCCjmQD9XxvxfBgHFDOjn2lgCyyCgmAGb7+pYAosgoJge/Vwfi2ARBBSTo58BYCEsgoBicmy7IWAhLIGAYmr0MwgshSUQUEyMfoaB5bAEAoqJseEGguWwAAKKadHPULAgFkBAMSn6GQwWxQIIKKbETUADwqKYHwHFhOhnSFgW8yOgmBD9DAlLY34EFNNhiw0Li2N2BBSToZ+BYXnMjoBiKhwADQ0LZHYEFBOhn+FhicyNgGIa9DNALJK5EVBMg34GiIUyNwKKSbCpBomlMjMCiinQzzCxWGZGQDEFAhomlsvMCCgmwHYaKhbMvAgoxqOfwWLJzIuAYjwCGiwWzbwIKEZjIw0Yy2ZWBBRj0c+QsXRmRUAxFpto0Fg6cyKgGIl+ho3FMycCinHoZ+BYQHMioBiH7TN0LKAZEVCMQj+DxxKaEQHFGPQzfCyjGRFQjMHGqQDLaD4EFCPQTw1YSPMhoJCjnyqwmOZDQCHHlqkDi2k2BBRi9FMJltNsCCjE2C6V4C/dbAgopNgs1WBJzYWAQoqtUg0W1VwIKIQYgOrBspoLAYUM26QmLKyZEFDIEFBNWFgzIaAQoZ+qsLhmQkAhwQapDMtrHgQUEgRUGZbXPAgoBOinNiyxeRBQCLA1qsMimwUBxXAMZ/Rhmc2CgGI4tkWFWGhzIKAYjMGMRiy0ORBQDEU/VWKxzYGAYii2RJ1YbDMgoBiIfirFgpsBAcVAbIZaseSmR0AxDOMYtVhy0yOgGIatUC3+9k2PgGIQNkLFWHaTI6AYhG1QMRbe5AgohmAAqhlLb3IEFEOwBarG4psaAcUADGF0Y/FNjYCiP/qpHAtwagQU/bH9accCnBgBRW/0Uz0W4cQIKHpj49OPZTgtAoq+GL1EgGU4LQKKvtj2IsBfwWkpCuiju5sutx8MmTjWHTE2vSiwFCdFQNETW14U+Ds4KUUBPdxcEtD1sOFFguU4JU0BzcegV6OegVVHjO0uEvwlnJKqgJqC3ro/5glYc6TY7KLBkpyQroCavfg7D0f8PGuOFFtdNPhbOCFlAT3sNpvrET/OiiPERhcRluV0tAU024kfMwRlxRFim4sIC3M62gI6cgjKiiPDADQmLM3pqAvoOKw3MmxxUWFxToaA4jyGLHFheU6GgOI8trfIsECnQkBxFgOW2LBAp0JAcRabW2z4kzgVAopz2NriwyKdiPKA3lyeuplI171HFpy4WDDb4sO2MBECijOYbTFioU4j6oC2sdIMx6YWI/4sTkN5QIdinRmMLS1OLNZJEFCcxoYWJ/4wToKA4iS2s1ixYKdAQHESm1ms+NM4BX0B3VYn1C+G/zBrzEBsZfFi0U5AWUB3jYuShjaUNWYgNrJ48cdxAqoC2vGxnIMuYiKgQ7GNxYyFO56mgD6+5xcz/6D4YfenZ4UZhk0sZvx5HE9TQPetXJqkDro/PevLIGxhcWPxjqYpoNv2Dns2CB10GJT1ZRA2sLjxB3I0RQHNhptXrS/uhu3Ds7oMwfYVOxbwWIoCmo0227vre94LPx82r9jxJ3IsAopj2LrixyIeSVFA2YVfGBtX/PgjOZKigHISaVlsWylgIY+jKaDdlzG1R6UnsLL0x6aVAv5MjqMpoJ0X0g97KxLrSm9sWWlgMY+iKaBFMX237g96BtaV3tiw0sAfylFUBdS9FRM3E5kX21UqWNJjKAvogdvZLYStKhUEdAx9AR2FNaUntqp0sKxHIKDowjaVEBa2HAFFBwYlKWFpyxFQdGCLSgqLW4yAoo0hSVpY3mIEFG1sT4mhoFIEFC1sTqlhiUsRULSwNSWHggoRUDSxMSWIhS5DQNHEppQgAipDQNHAppQkFrsIAUUDG1KaKKgEAYWP7ShRLHgJAgofm1GqKKgAAYWHrShdLPvhCCg8bEPpIqDDEVC42IZSxtIfjIDCxRaUNAo6FAGFgw0obSz/oQgoHGw/iaOgAxFQ1Nh8kscqMAwBRY2NJ3kEdBgCigobD1gJhiGgqLDpgIIOQ0BRYsvBwa4GrAc9EVCU2G5gUNABCCgsNhsUWBP6I6Cw2GpgUdDeCCgKbDSosDL0RUBRYJNBhYD2RUCRY5OBg9WhJwIKgw0GHlaIfggoDLYXeLiWqR8CigP9RAsF7YWA4sAZJLRR0D4IKBiAogsF7YGAggEoOhHQ8wgo2FDQjRXjLAIKNhMcwapxDgEFWwmO4DDoOQQ0eWwjOIqCnkFAk8cWguMo6GkENHVsIDiFgp5EQFPH5oGTKOgpBDRxbB04g4KeQEDTxraBsyjocQQ0bWwaOI+CHkVAk8aGgT4o6DEENGVsFuiHgh5BQFPGVoGeKGg3Apowtgn0RkE7EdB0sUVgAArahYCmiw0CQ1DQDgQ0WWwOGIaCthHQVLExYCgK2kJAU8W2gMEoaBMBTRRbAgQoaAMBTRPbAUQoqI+AJonNAEKsOh4CmiI2Aoix8rgIaIrYBCC3IaE1Apog1n+MQUFrBDQ9rP0Yh4JWCGhyWPkxGiuRRUBTw6qPCbAaFQhoaljxMQV243MENDGs9ZgGBTUIaFpY5zEVCnogoIlhlceESCgBTQrrOyZFQQloQpJf2zG15AtKQNOR+rqOOSSeUAKajLRXdMxlk3RCCWgqUl7LMadNygkloIlIdxXH7BIuKAFNQrorOBaRbEIJaApSXbuxnEQTSkATkOaqjWWleSiUgMYvwdUaa0gxoQQ0esmt01hNegUloJFLbo3GqlJb3who3FJbn7G6tFY5Ahq1tFZmBCGp/XgCGrGUVmSEI6WTSQQ0WgmtxQjMZpNKRAlopFJZgRGmVBJKQOOUxMqLkKWRUAIapfhXXIQvhYQS0AjFvtJCj9gTSkCjE/kaC2XiHocS0KjEvbJCp5jXSgIakZhXVGgW75pJQKMR70oK/TabONdPfQHdVovhYvgPR7XsPHGunohJjOuosoDuNr6hDY1oyXniWzERo/jGoaoCenO5abr9YNAzRLLUPLGtkohZbAnVFNDH9/xiPrqb/fvOwyFPsfIye6sx9kne16j+tXk3Y/PZxjve8Q7vke9pZP/7PsYTnvCE7zac7/+8zO80sv/+OON3ZQ4/7U3G+73f+73He/xS45f8cuNtb3vb3za+5Vu+5cd//MdfaPycbzM+6ZN+1W/I/AHj6U9/+jcb//7bjR/5kQ//8FcZ/znz7Gc/+53e6Z1eYfzCX/wz/vsP/uC/Nb7ma776q/+c8XeN3/ihH/pZxr/5DOMpT3nKj/7oj36X8QM/8AN/8PM+7/P+vPH3Mv/of37sx/6KP5x5nvGrf+sP//APf8d3fLHxhje84Z981Vf9lb9o/E3jX2X+9Yd92Id9nfE/ftMrjW/6pn/xFV/x5cbfz3zf932B8a3f+q1fb/yX3/LvXvayl/1Z4+9k/nnmf7/EeMtb3vK93/slX/KXjS/6or/xOca//KfGH/0Hn2/89Rcbr3/96//rlxqvec1rPtP42q/92q80/s93fucb3/jGv2Z8uvHJn/wfjT/+D/+q8bP/lvEi4+M//huN937v9/7Nf+QbjP/383/W9xj/6T9kPtf4Z5lf+Wrjv2W+zPjHX2j82I89//nP/4iP+NPGnzG+//u//4d+6E++1vi5h8PHGO/8zi83soX+pzK//xdl/pLxute97lM+5RnPeMYvM95s/ORPFivKS42f+ql3N37iJz7og/7XXzD+r3F4LyN7zAuMX2AUP/N2o1rVnmr8GuNJRt3QJxs91vpnGc0vPtHos83MR1NA961cmqReD3mKdQP6VmvUk7yvlf9jU/Tz3T7b8hL6ntb7WN9tld+v+pn5OCsr6JusLKF5QL1+Fgl9ofVtNqG2n5lvtr69SOirLJvQV1itfpYJzfv5WZ9hlf00CS37WSW06ufznlf3M1P100vo1xVeadl+Fgn9AuvrrbKfVUJfYr3lLbafmc+xTECLfn7+i63Xf6n1mdZXWl4/M3lAi35myn5mvrFg+5nJ+/k9VT/zhL7aKvr5ZV9omYTW/SwS+lrrYwovt/x+egl9s5Un9KVWHtB3L/tZJjQv6Hu9wCoT+narWNWeatl+1gl9snVurX+W5X3xidao7WkkTQHdtnfYs0HooMOgMQW0WAMJKAHVGFC7M09A28849ROWsuHmVeuLu2H78KsG9K1vnaCg71vp6KdX0GP9LAva1c+soG96k1/QZj+zgr7whc2CNvtpC/qqV3kFfUWl3c+8oH4/s4KW/fwup591Qbv6+cVfXPezLmijn6985ZdXqn6WBXX6WRT0JZW6n25BG/188Ysb/XQK6vUzL2jVz6ygL3pRo6Df8A1uQd1+fu7nlv18td9PU1Cvn1lBX/tar6Avf3ldUK+fdUHf/GanoC99qVtQp59OQV/wAr+gb3+7W9CnVp70pLqgh7qfT37y6Q3zWc/qKOgTnxhAQRUFNBtttnfX98NOIxFQAkpAQwno4eAE9ORJJQI6AQJqEFACGm1Aj0aUgE6AXXgz/U5AzRcIKAGNK6CdGSWgU0j+JFK+anln4ZsF5SQSJ5G0nETKVSeRWld4+5sqJ5Em0H0ZU3tUeoLegFarFQEloBEG1FvH2yEloBPovJB+2FuRdF5I769P/oX0RUEPXEjPhfSKLqSv18HmRUxHIrrhQvoJ5MX03bo/6Bm0vXvs5G4NEKljGQ1vO1AVUPdWTIV4byYS9moDzO1sRIPYKpQF9BD57exCXU2AtfQO6SrbiL6AjrJ+hwasDsQTcIS4xRDQ2X7TJJaaXECRcLYhAjrBc85i+gkFIrTulkVAjz90DTO+diBua2yJygN6c3nqQtBR82Uu07xwAEctt6GmFtA/BADTmbppAQW0bZYRqGTCAayCEegI1A7AdAgoAAgRUAAQIqAAIKQvoFG/Fx6AJsoCumucKYv3bkwAwqcqoDeXrWsNht1PmYACmJCmgHbekX7QZ8oRUAAT0hTQ7s9Ean/U8QkEFMB0NAVU/adyAoiLooCq/1x4AJFRFNBstNneXd/P9F54ADiLgAKAkKKAsgsPICyKAspJJABh0RTQ7suY2qPSEwgogOloCmjnhfTD3opEQAFMR1NAi2L6bt0f9AwEFMB0VAXUvRUTNxMBsDZlAT1wOzsAwdAX0FH6fqAUAPQxeaOmfsIprT2zAcRl8kZN/YRzYXfew+zwMDt8zA/PjLNDzYxmlfAwOzzMDh/zw0NAWSUamB0eZoeP+eEhoKwSDcwOD7PDx/zwEFBWiQZmh4fZ4WN+eAgoq0QDs8PD7PAxPzwElFWigdnhYXb4mB8eAsoq0cDs8DA7fMwPDwFllWhgdniYHT7mh4eAsko0MDs8zA4f88NDQFklGpgdHmaHj/nhIaCsEg3MDg+zw8f88BBQVokGZoeH2eFjfngIKKtEA7PDw+zwMT88BJRVooHZ4WF2+JgfHgLKKtHA7PAwO3zMDw8BZZVoYHZ4mB0+5oeHgLJKNDA7PMwOH/PDQ0BZJRqYHR5mh4/54SGgABAeAgoAQgQUAIQIKAAIEVAAECKgACBEQAFAiIACgBABBQAhAgoAQgQUAIQIKAAIEVAAECKgACBEQAFAiIACgBABBQAhAgoAQgQUAIQIKAAIEVAAECKgACBEQAFAiIACgBABBQAhAgoAQgQUAIS0BfTmcnO99jSEIZsTmVv3156O9T26a+bE1dqTEQzWjLbZuqEsoGZbIaCHMhrG7QdrT8vKtnZGUIwca0aH+bqhLKBmYyGg7laS/HayY0a4WDO6zNcNXQHdbwhoblfus5o142LtqVmT2V+987BYNZKeERZrRocZu6EqoMVfVwLq7pHsEh9obMtMZCVlJ541o8uc3dAU0Mf3Nrc/koAe8r+o5eAimykpz5Fs2ygrseNEEmtGl1m7oSmg2RZyvWOlOPit2CY9R7Jx50X9n2ZfPm2sGW2zdkNRQLMN5OpAQJu2Se+5OsEwAw12WR1prxmVebuhJ6DZ9pENMAhoQ7YPm/K4y1kfshWEYDgSXzNKM3dDT0CLv6cEtCHxI3/ubiojLk/ia0Zp5m6oCei+WB0IqC/1A39uNAmoK/U1w5q7G1oCWu6PEFBPtpWkfdzPDyjrRiX5NaMweze0BHRrVwcC6tonf6kfI9BurBmF2bsRcECrN6Vlm0X1+tMNqDs7LLYSAtqNNaMwfzd0BLS+2o+A1pXYbjjKxVn4LqwZhQW6oSOg9Q0jCimeXWwG1LzRhPc677kOtIU1o7RANwIOqIOAtpibaDAbeCdSG2tGhYBaBLSJW2cUeC98E2tGjYC2pHsM1JN1g60kx92YfKwZnVI8BtqJgBrcaKfC/UA9rBndCKhFQI29v2eS9BzhjvQu1oxuBNQioIdimMFmUuIzkWqsGUcQUIuAHvzPvWEz4VM5a6wZRxBQAAgNAQUAIQIKAEIEFACECCgACBFQABAioAAgREABQIiAAoAQAQUAIQIKAEIEFACECCgACBFQABAioAAgREABQIiAAoAQAQUAIQIKAEIEFACECCgACBFQABAioAAgREABQIiAAoAQAQUAIQIKAEIEFACECCgACBFQABAioAAgREABQIiAAoAQAQUAIQIKAEIEFACECCgACBFQABAioAAgREABQIiAAoAQAQUAIQIKAEIEFACECCgACBFQABAioAAgREABQIiAAoAQAQUAIQIKAEIEFACECCgACBFQABAioOnYbTa3H9T/3G82V0Of4tFd9xke3d1s/Cfp85UTk1e5GDph9lfdeXj0u4/vea/effij32MfcOu+5PeefJE3l+ZbzSf256NZFJnr5k8NXjxYHAFNx84vkyCgfoS2tnZ1Hfp85eTk1a7PPr5FGtBtMR/kAT3+IouyGt7v9qelqKXzmPqnBHMBiyKg6dj5m6QgoFs3BHXwyq/1+cqZyRtTUGFAy/kgDujxF1mX0P+eNx+rfm7s5Ls/RUEDR0DTsfO348EBzQrj/LzZ7s0Gv6/GtX2+cnryylyUPzfM6YAeffjYgJ54kbtyP3zrfs+fjyaX+XR4DzZfMY87/3cHqyKg6ShGStV2PDSgxUip2qK3TiWL8PT5yunJq8ZbWVWGx2ylgB5/kaaN9iU5x58b83FX/a3YF/9lvn9VfU90NBiLIaDpyDbHX39ZV2pYQPP9yne95x6nc/bTr3p+5czk1TusW8He6zoBPfEi93X/zGjy2j7cm4/Ob7X/6VTTeW6EiYCmw2zfzkioGdC9fwyyERMzfL12jiNm46RyM8/+046czn7lzOS5Aa1+/9adnGIKdvUBQyOP0oUtYvWT9Sg2n4562r2Hl6/62vZr7z/1+Vlz4kW6QS3/IpyYj41HNmYDgkRA02G2ZzMSshvs0IBeeCdinDjYr/b5ypnJc3fhbYrqMzT5F8zzfEJ51qXePc6//2n5D1VPs68esbN9LKbAf3gjoFv/qXvMmp4vskxhcz629wPcaO44jRQ4ApqOfFO/uXQCMyCgOT+g1/VX7a7n2a+cmTznJJJ9tHtq/upgT8D4k1g95GfmRayGdNVVW8VUl9PeeLgf0KeV3/RDeCagPV6kf3ihOR+LV2Wfxg3olotBA0dA01GMlaqd+HHXgbZ3NPt85czk1Zy97avyP8oz08Wzliety++U+97lNOaPzKOVPaIe9TUf7h0DbTx1L/1epH941JuPt+7vvBftD2kJaNgIaDqKLbPaKMcG1B0nFbk8/5Uzk+eoRsn2gEM2sDS/2rm0x55sqc5il5cT7YrflJXyg4v/2ufPVh9W8B/uBdR/6l56vcjG0VF/Pj7T/7PhnMxvvPUB4SGg6bBDm3IDnTKgplB9vnJm8lyNcNgT0s6YrIiSs9u8qy4DuspfnjlYel1NarUj33i4F1Dvqfvp8yJt/Sv1fCyGveV05C86/1J9uIKABo2ApqPcN9xVO7GhjUCdg4n+xFXXnjsBLCrnXOljs1fssWe/0JwmKvbd7c5/9sD2w7suY5IHtPNF7pvHVBsBrbOd/3j91qRbv/eSXfiwEdB07Pyh1riTSLMG1L3wvJ6sYwEtW1f+59YONa9MRB+WI9IqoM2H9wjoqVlz/kW2+tk4llz9qnIAWxb01n3JDV+wJAKajursRDHUCfgsfP0mHueN4t0BdVrnFPHafP26OBxqj4kW09798DEBPfsit+3rSv2AVkuhXiL54YwrLmMKHwFNx87dPu88HBfQvXeu2Hy1z1fOTF4dC/vOnfK+Grcf1MdAz45As/+9ModAHxQV3dZXkM4xAj3zIp0Lbzvn464zoCUupA8dAU1Hva3mO/HjjoHO/E4kG9Cde0FTz2Og+eHPh1v7zQt7SHS2Y6CnX6TzxnaH/4fo+N0JeCtn8AhoOpzBjtmJ/6hRAZ35vfDF+zCdpu2P7MJXbzJ3rlDabW4/917++7KMfqr9fnUWvvnwkQE9+SKP3ETF/0Pk3p/lurqKwD4hJ+HDRkDT4W7fxTVDY26oPOvdmOzQs26a2ZfvDGidzeq+cOY7v+PSXqp165l2kpvXgVYPHxnQUy/y2E2lOudj2dK6yDeXHAINHQFNhxvQ/p+04XI3/DnvB1pd3FPeeXhXHnpsV65Ma366qchefcPN/IsX7rS3H76v32YvCujxF+kMdw/Nb7TmY/7z5f1A8wnZbdqnnxAYApoObw9zPzagc9+RPv8B7+xNd0Drx3yAdweS8sBn2bBy2lsPL070X4sD2n6R5cCzce7JO8LbNR/bd6TnCGjoCGg6/EN027EBnfczkezvKX9+84H3yjdktipnO2Vvr1R+5ar8+fqS9eoeAN7Dizf8XMkD2nqRNqDejU+OB7TubPk7Wx+ShGAR0HT4Aa3u0zFA4zqd+T6Vs/mJQVfl6erOyuWlKm/waX+pfdR+4zzIffeP83D7b3lAmy/S/nr3s41OBdQW2P1KdcgCgSOgACBEQAFAiIACgBABBQAhAgoAQgQUAIQIKAAIEVAAECKgACBEQAFAiIACgBABBQAhAgoAQgQUAIQIKAAIEVAAECKgACBEQAFAiIACgBABBQAhAgoAQgQUAIQIKAAIEVAAECKgACBEQAFAiIACgBABBQAhAgoAQgQUAIQIKAAIEVAAECKgACBEQAFAiIACgBABBQAhAgoAQgQUAIQIKAAIEVAAECKgACBEQAFAiIACgBABBQAhAgoAQgQUAIQIKAAIEVAAECKgACD0/wFH3TSUoAp4XAAAAABJRU5ErkJggg==" title alt width="672" />
t=rank(rd)/n #求观察累积概率
q=qnorm(t) #用累积概率求分位数值
plot(rd,q,main = "Q-Q图",pch=20,col=rainbow(n)) #画Q-Q图
abline(0,1,lwd=2)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABUAAAAPACAIAAAB7BESOAAAACXBIWXMAAB2HAAAdhwGP5fFlAAAgAElEQVR4nOzdebxcaUHn/+/TgC9ZtGVYREywQWmmARFkM5lp7EFBYBiUNgESHR2mAUEW6R4VbXRyg8CIyKLYygwg/FATIUFFQZkGUcBJBFFBW9kEGxO02UQWgZcsz++PuktV3TqVu1TdW+ec9/uV16urzjl183Sn+qY+93nOOaXWGgAAAGCxnbfbAwAAAADOTcADAABACwh4AAAAaAEBDwAAAC0g4AEAAKAFBDwAAAC0gIAHAACAFhDwAAAA0AICHgAAAFpAwAMAAEALCHgAAABoAQEPAAAALSDgAQAAoAUEPAAAALSAgAcAAIAWEPAAAADQAgIeAAAAWkDAAwAAQAsIeAAAAGgBAQ8AAAAtIOABAACgBQQ8AAAAtICABwAAgBYQ8AAAANACAh4AAABaQMADAABACwh4AAAAaAEBDwAAAC0g4AEAAKAFBDwAAAC0gIAHAACAFhDwAAAA0AICHgAAAFpAwAMAAEALCHgAAABoAQEPAAAALSDgAQAAoAUEPAAAALSAgAcAAIAWEPAAAADQAgIeAAAAWkDAAwAAQAsIeAAAAGgBAQ8AAAAtIOABAACgBQQ8AAAAtICABwAAgBYQ8AAAANACAh4AAABaQMADAABACwh4AAAAaAEBDwAAAC0g4AEAAKAFBDwAAAC0gIAHAACAFhDwAAAA0AICHgAAAFpAwAMAAEALCHgAAABoAQEPAAAALSDgAQAAoAUEPACwCM4eP1hKKUdPL+jXA4BdV2qtuz0GAICcPlr2L83lKx84dubEoT1z+dIAsIPMwAMAi+XAsTN13JljB5p2NTi1tPr1Lr1YvQPQBQIeAFh4Z9/yWyeT5OThvZteFb90hdl3ALpBwANAmy2f6T3BDp38vSMDWOn3wRT8kX0z+8IA0CYCHgDaaKWb9x4+2XDE0v65hvxODuD0S5Z/kwPHnrd+Nn15JAePn93u7wMAi03AA0DLnD1+cFo3j1vaP+u43ekBnL56afnRycN718/0L4/k5OG9Ih6AbhPwANAmp49uIp1XnTy8d1Yz8Ts+gLPHn7u0/HDp1LRr1WXplGvNA9BpAh4AWuPs8YOTbrS27tLsy5dsH7W0f/sNv/MDOHv88sMnkxw4cCBZ2j/+BU4fXR3P0innxgPQcQIeAFpipWWHHTh2ptZ18857Dp2YGNHrA3jRB7B89vuBY8878bxj6xJ+Ld8PHDsj3wHoPAEPAK0woZ6XTq1P5zV7Dp0YXl++/JLnbvks8V0YwHKgD5bG7zl0xVKGE3443ydc2w4AOkfAA0AbrN1IbcVGlozvOzJe0CcPv2SLp6Lv+AAGgT40t77vsmMHspzwQ4v5nfoOQF8IeABogdUbqa04cOyyDS0ZX47eIUtXb6Xgd3wAg3wfjfM9h563nPBrF9Jz6jsA/SHgAWDxnb32mtENBy69eIOTznsuvnQsoK+5dvOr6Hd6AGePP3cpS6fqeJyvJPzKKJz6DkCfCHgAWHxn3ju2fP3OF2x40fieC+48uuHke88s/AD2HDpR19V7cvb4waF72Fk7D0DPCHgAWHjr578v3LvxV++9cNtT8Ls+gGTCHeiX9pdZ3d0eANpAwAMAi+7s8YOlrN7x/cCxM6uXt1/aX0o5uOVL6wNAmwh4AFh46xaw92kAp4+WoZn3A8fO1BOH9mTfkbp2j7qTh/eWYjYegM4T8ACw8NatQe/HAM4eP1iGJ94PHBg9934k4rM8Gz9gTh6ALhLwAMCiOXP8YBmfd68nTlyxNBTpg/n2fUfqaMUPnDy8d/+6jQDQcgIeABbe9i4kP+0K8oNJ7mbLM9nzG8AkJw/vX033pVO11rp8tfl9R2o9s3IbuUHKHz29vH0o4wevWV/1ANByAh4AFt+6JexLV2/4fO/TVy+NbtjUFeR3awAHjp2ptU64ldyeQyeG23xp/+qZ74OMn/QaAOgGAQ8Ai2/dDPjkgD59dP3Z3+vz+dKLN3/z9B0dwMqF6hrtO2J+HYA+EvAA0AL7Ljt2zinws8efuzR+RfbBtmFb6vcFGMD4eI4sr6XfynoCAGgnAQ8AbbDn4kvHA3r/6Fz36ZccPjm8t5SDR49efnj09PMDx543MrW959CJOs3aRPicBrAB68/TP3p6behTp+oBoFMEPAC0wp5DVyyNbTp5eO9QQq9fV35yaWns6nFLV2w9d3dtACs/ZFi9fN3w/eLcMA6AHhHwANASq6vGh5w8vHeoYfcdGencMQeOndne5d12eQDLIT/25U8e3ru6Xh8Auk3AA0Br7Dl0YtLF25bPOl+2d2zR+tBhl293tnrXB5CVjh8dxtC16AGguwQ8ALTJviPNM9znNHp9uZYOYHUYIxV/zbVW0gPQeQIeAFpmz6ETU9apb8DS/u0l9K4PYIXbyQHQLwIeANpo/ZXdxhw4dqY2HXHg2GXbOhl+IQYwsO/I+OXyAaCzSq11t8cAAMzZ2eMH105NXzpVt3c1u/kM4PTRsn9pDr/1gWNn5D0AnWAGHgB6YOjKb7Ob/Z7XAFbn7rfF4noAOuf6uz0AAGCn7DtS65FeDwAA2kzAAwCL4Oy11yQzXvC+GycLAMDcOAceAAAAWsA58AAAANACAh4AAABaQMADAABACwh4AAAAaAEBDwAAAC0g4AEAAKAFBDwAAAC0gIAHAACAFhDwAAAA0AICHgAAAFpAwAMAAEALCHgAAABoAQEPAAAALSDgAQAAoAUEPAAAALSAgAcAAIAWEPAAAADQAgIeAAAAWkDAAwAAQAsIeAAAAGgBAQ8AAAAtIOABAACgBQQ8AAAAtICABwAAgBYQ8AAAANACAh4AAABaQMADAABACwh4AAAAaAEBDwAAAC0g4AEAAKAFBDwAAAC0gIAHAACAFhDwAAAA0AICHgAAAFpAwAMAAEALCHgAAABoAQEPAAAALSDgAQAAoAUEPAAAALSAgAcAAIAWEPAAAADQAgIeAAAAWkDAAwAAQAsIeAAAAGgBAQ8AAAAtIOABAACgBQQ8AAAAtICABwAAgBYQ8AAAANACAh4AAABaQMADAABACwh4AAAAaAEBDwAAAC0g4AEAAKAFBDwAAAC0gIAHAACAFhDwAAAA0AICHgAAAFrg+rs9AOailLLbQwAAAJijWutuD2GnmYHvIPUOAAB0Xg/Dxwx8Z/Xwx1EAAEDH9LDSpxDwAAAALJymdB9MVfYz7AU8AAAAC2RKnPd8obGABwAAYCFI9+kEPAAAALtv+pp5IuABAADYXdJ9gwQ8AAAAu0O6b4qABwAAYKc53X0LBDwAAAA7R7pvmYAHAABgh1gzvx0CHgAAgLmT7tsn4AEAAJgj6T4rAh4AAIC5cLr7bAl4AAAAZky6z4OABwAAYJasmZ8TAQ8AAMBsSPe5EvAAAAC98AsZqesfySyjWrrvgOK/ZvcM/s/xJwsAAKwaq/dV28/4XTndvZ/VYwYeAACArXCluh123m4PAAAAgPlqmn6fvmu6KWvm1fucmIEHAABgE5zuvlsEPAAAABsi3XeXJfSbdfb4wTLs4PGzuz0kAACA+Rrkz8Rd6n3HCPhJTh+dHOinj5ay9/DJkWNPHt5bytHTOz1EAACAjZpyqflzXoV+erqr950k4MecPX6wlP1LaxtOHt47iPizxw8Obx+xtF/DAwAAnSPdF4qAH3H66PgEe5Lk5OHLj59+y2+t7Fk6VdecWlreuN9iegAAYFGtn2n/kdQp0+9NE+/SfRcV/+nXnD1+cLnfl07VI/vGtg0cOHbmxKE9Yy88fXQwab/2sl01+N/MnywAALAFrTjXvZ/VYwZ+zdnlOfaRDN9z6MTKHHuSA8eet67ek+y77NiBJFm62jp6AACgrVypbsEJ+FXL/X7g2GVjk+greZ4cuPTiCfmeZM/Flx5IkmuutYoeAABoHVeqawUBv+rMe08myZ0vWNfoK3k+ad/KIRfcOUlOvvfMTMdUtmSmQwAAADpOureFgN+I5TwHAADoEleqaxcBP27aKvjmfWevvWYeg6lbMo+RAAAAXSLd20jAr9p74YEkOflbb1lf6fuO1FprXX/9+RXL6++X7r8AF6EHAABo5Ep17SXgV62c6X7y8Es2ey3500f3LyXJgQv3znpUAAAAs+FKdW0n4NfsOXTFUpJkaX8pRzcY8aePljK4CXyydEXjDD0AAMBuku4dIOCH7Tuyes/3pf3lXBU/3O5Jlk4dsX4eAABYNE537wwBP2rfkbra8OdaEb980nySZOlUle8AAMCqkn8b/rU7Y5Du3SLg19l3pNZBxTff9n3Y0qla1TsAALBmfbHvcMa7Ul0nFX943TP4H9WfLAAA7JamVq/5irn/1g3dnm41Qj+rxww8AADALE2ZaZ/3JLwr1XXb9Xd7AAAAAGyXBfN9IOABAABaTLr3h4AHAABopZ6c7s4q58ADAADM0pQr1c3qInbTLzKv3rvKDDwAAEBrmHXvMwEPAAAwYzVfMXbB+ZnMvTvdvecEPAAAwOzN9pbv0p0IeAAAgEUm3Vkl4AEAAKYpeebw05ord+j3dbo7o4o/+O4Z/H/uTxYAALZvrN5XzTXjpfs59bN6zMADAAAsEGvmaeI+8AAAAJM1Tb9P37X1367h7u5u7c6AGXgAAIBdZtadjRDwAAAAu8bp7mycgAcAANgF0p3Ncg48AADAZFMuNb/Nq9BPWTOv3mliBh4AAGDN92YsrZ8x26/vdHe2zH3gO6ifd0QEAIDtW1fvSfJbow2/5bl36T5D/aweAd9B/XwrAwDA9k0M+CSvyrY+XTvdfeb6WT3OgQcAAEia6336rumabu0ep7uzec6BBwAAmAtr5pktAQ8AADBj0p15EPAAAAAzI92ZH+fAAwAAvXejkhuVV92ocf9GLmI3/XT3LQ8NVpmBBwAA+u1GW7xA3SoXmWdnuI1cB/XzhgoAALBFowH/vZ8d2XnOuXez7ruin9Uj4Duon29lAADYiunT75+d9qFauu+iflaPJfQAAACbI93ZFQIeAABgo5zuzi4S8AAAQK99x+hJ73/YcC166c6ucw58B/XzbBAAANiC78jkLP/DG42cAG/N/KLpZ/WYgQcAAGgk3VkcZuA7qJ8/iwIAgM1qmn4feGPDTp+0F0E/q8cMPAAAwIimdE//ipGFIuABAIAOKe8aeVov2tSrpTuLTMADAABdMVbvq1s2lvHWzLPgBDwAANBTf5g6OA1eutMKLmLXQf28nAMAAH23fvp9WMMkvIvMt1Q/q8cMPAAA0AIljxx+WvPS7X7BhnRP/7KQthDwAADAohur99UtW8t46U5LCXgAAKBHrJmnvc7b7QEAAABMs376ffKuKZearxclKaVMrPdaq3qnFQQ8AACwYMr1Rn5t/+tJdzrBVeg7qJ/XYwQAoCMair3UH5i4ffw0+NFr0Zfcsen38YG51fpZPc6BBwAAOmRlIb0r1dE9ltADAAALo3nBfC0vn7Cx4Sr0U65Up95pLzPwAADALih53/DTmtvP5su6yDzdJeABAICdNlbvq1s2Htnr596lO50n4AEAgHbY7IL5qHe6xVXoO6if12MEAGBBlS+OPK3XXz/9PrK//PuGHV+a8LWle1/1s3pcxA4AAJibsXpPUr5Yy21n8IUbbu0eV6qjuyyhBwAAFkn90vi16NfNvTvdnX4S8AAAwOyUm4w+/5eJR9Vy21L/vvGLTFotv/zlpTs9JuABAIAZGa/3JF+TpCnj15tyMznpDgIeAABYaK5UBwMCHgAAmIUJ0++rvuack/AT596lOwwT8AAAwI6r15+yWn7AmnkYI+ABAIDFIt1hIgEPAABsW/mnjR5ZpzWIdIcpztvtAQAAAO328OXofl/jEfUzqddf/tWglKLeYToz8AAAwJZ842pvbyuwXakONkjAAwAAm7dS7w//wHBjvy/jl6ZrnpZPYs08bEbxP0b3DL4J+pMFAGCOvrHkJ5Pk4Y9e/tj5ijScBl+/buJm6c529LN6zMADAACbtFLvWyPdYWtcxA4AAJiBh2d8pv3h+bqx6XdXqoPtsIS+g/q5mAQAgHkrecLw0/riqwYPVlfRj3nF0GZXqmO2+lk9ltADAADnNlbvScqjHp+hjJ/2WrPuMAuW0AMAAA0+U9Z+NXvFi8b3vqIuT783rZmvtap32CxL6Duon4tJAACYsaFoLzd5/JQDxyfhH1Vj1p0562f1WEIPAACMKoMrz91q+emnr9vEax9Vne4Oc2IJPQAAMKSsu237V92qlldt6KWPnjbxrt5hm8zAAwAAM1AePXm7bodZcQ58B/XzbBAAAM7hDaNz49856ePi+un34Z31e9dvrPklp7uz8/pZPZbQAwBAD7xhXWO/oUzYuFnlKheZhx0j4Cc5e/xgGXLw+NmNvuDo6R0ZIAAAbFx5V8rX19VfM/qiV6VMvgO8dIc5EfDjTh8tZe/hk8ObTh7eq80BAGin8q51W4YzfjOT8PUzV9XPXDU93dU7zI+L2I04fbTsX2rYt7S/XHPszIlDe3ZyQAAAsG31jseGn5a/Pdx05EX1uneVWzXuSuMt4nQ77AAz8EPOHn/u0vLDpVN11ZljB5a3njy899zL6QEAYFGUd43Xe5J6x2P1jsc2u5b+3WXyLeLMusOOEfBrTr9ksHL+wLEz9ci+te17Dp1Yq3gNDwBAG5Tct+S+m33Vu1Ivqtet+1LXlYxvjHSHHSfgV5299pokydIVk1bJ7zl0op5aSqLhAQBYXDcpy79uXN544/LG9dPvq5Z3TbqZ3EX1usGvpnSPNfOwGwT8qjPvPZkkS/ff13TEviM73fBlS+Y/LgAAFtFNZvFJ8F2pSd5d8u6Gr2biHXaLi9htzr4j9VTK/qXk5OG9Ry8YWWoPAAA766e3WeyTpt+Taem+vd8P2BYz8Ju278jK+fBL++c9DV+3ZK5DAgBg15XcvuT26+v98uTybX7lhhWdPmfCIhDwq/ZeeCBJlq4+5/3e9xw6sdzwJw/vdXt4AAB2UsntN37wTdJ4x7jUkV3SHRafgF+15+JLBwW/fwNNvufQ83ZsGh4AAEZ8sLzvg+V9j04Gv8ZsdhJ+ynWUpDsslOL/yTVnjx/cO7iTXA4cO3Ni0sXoR5w+WvYvjW5aOrUAp8UPvv/6kwUA6KAykuf/kOetPn7R0PbnZcRnMnot+pW59ynXP/ZhkgXXz+oxAz9kbVo9Jw/vLaWU6XPxa1elBwCA+fpIGa/3JLfJ5bfZwIx7qS8e/Eo9fM56t2YeFpaAH7F2dnuS5MCFe8/xgn1H6vALAABgDj6ygavNr19LP6zmjTVvHDx2uju0lIAft+fQibqpKN/0CwAAYNNu2TzTPjYJP7x+/jM1n6mR7tANzoHvoH6eDQIA0FWD6fcpAZ+Vk+EHp8H/zKSPgU53p2P6WT3X3+0BAAAA09wytxrdcKjpSOkO3SbgAQBggZVbrdt0PMn6jL/NZupdukMbCXgAAGi3fxi/bVwi3aGLXMQOAAAWziUpl6RMmn5fdXz10W3qyPS7K9VBV5mBBwCAxXJJNnDXuIE6MvfudHfoNleh76B+Xo8RAKAj3lXKRa8ePKzlMVMOLCeuqyv3Mpbu9E0/q8cMPAAALJDVej+nc9Z739oGOs858AAAsDDeNZLi5RbXNR042OV0d+gVS+g7qJ+LSQAAWuoLQ2e8f0XGp9+bVtGXfHjidh8C6Yl+Vo8l9AAAMH/lDiNP63sG//zCua5XV25xXf3oyLXom9I9/YsZ6BsBDwAAc1Hutfyg/tkd1u27Q7KW8QO/M/GrfOR3yy1XFtJ/1JXqoNecAw8AALO3Wu9TnHP6fdlHfjcfLU317nR36A8BDwAAs1SenvL0tacTpt9X3KBcOLbllfnuSV9x0kbpDv1jCT0AAMzMcrr/7qy+XGO6z+g3ANrEDDwAAMxGeea2Xv49SVYn4ct3T6x3s+7QZ2bgAQBgBkr+5vhT7zS85dA9t/J1HlaSiQvpTbxD77kPfAf1846IAAA7prx+5Gm9X5L8ZsMF6Q7ds/k0+PqekZvAN1/Szkc7GNPP6jEDDwAAm1EeOVwM5eqXDnr++Ja+2A1SBw3fVO996xNgCjPwHdTPn0UBAOyE8siJm38zL53yogmT8EN3gB98eFvPxzmYop/VYwYeAAA2pJzNlluh3PM99U9KknzF2teQ7sCmuAo9AAA0Km9d+1X3Tp5+T/KINO5Kkoek/knJV9TVei+lqHdgs8zAAwDAZOWts/k69aeSrKV742HSHZjKDDwAAExQ8prhp9d92xa/ziOGqnzKrLt6B87JDDwAAEzy1gfP8ItZMA9sn6vQd1A/r8cIADBDJa+p5fzhLR/OxUm+tuFc93L1S+v9xm8FP5h7l+4wD/2sHgHfQf18KwMAzMw7S+765oZ9vzp5c51wGzmnu8P89LN6nAMPAAAjyrfcsWnXh9fd7/3Deen6ep9+kfm+JQcwK2bgO6ifP4sCAJiJ8tTUZ149uu2Gw08Ga+mHfe3oxy5r5mEH9LN6XMQOAACWTar3JJ9LMpbxA9Id2EkCHgAANuFr71zy1+NBLt2BHSDgAQAgKddPMlTbv7/uiM8tT8KP1rsr1QE7xjnwHdTPs0EAALagvDZJ6oObprXGMv6GqWsnwEt32EX9rB4z8AAA9E7J879cnpzky1v+CtbMAzvObeQAAOiX1XpfeTplTutBI8/qxWm+RZz7wwHzZgYeAIBu+vRoZf/qyoPn58nrjt2AK7+racm8bgd2hnPgO6ifZ4MAAAz7dENs/2rypNEtU2fgMzgNvuS7mnb70AW7op/VYwYeAAAaSXdgcZiB76B+/iwKAGBV0/T7wE3WbWmahC/50sTtPmjBrutn9ZiBBwCAcdIdWECuQg8AQKeUfPX0A35x3ZaaLw69/EsT691F5oFdZwYeAIDu+NWUWv4l+eTqlk/n/I28sOaL56Vx5b10BxaBc+A7qJ9ngwAA7Ck5O5Tuw1YzfvVmcsPXopfu0Dr9rB4z8AAAdMGekrP55tFtfzLl+F9MnlyvSJLyvIkH9C0MgMVnBr6D+vmzKACgz76y5PPj9b5qOeNfmfOT/FOS5EdqsvKpaT2fo2Dx9bN6zMADANBuX1ly840d+fAHpb42ke5AOwl4AADarFzx+SR5ffMR/3F1Er6+tjHdo96Bhec2cgAAtFa5YuPHPjxlysS7egcWnxl4AADaqXxoE8fmayZu1+1Ai5iBBwCgfV5ckjxnI0eWXDOx3s26A63jKvQd1M/rMQIA/fHikkflPqPb7rH+NPiSaya+3Mck6IB+Vo8l9AAAtEb5wSSp4/We5O0jhzWke/r3cR/oEgEPAEA7DOr9RS9v2n/T5BPSHegwAQ8AQBuUt6/0d+OV562ZB7rNRewAAFhc5ZrsLUl5+zkOy1tK3rJ+uyvVAV1iBh4AgAX1GyW/fq5jJnZ7zLoDXSTgAQBYRL9Rlh98XyZPvzele9Q70FFuI9dB/byhAgDQDReWJHlv/svo5iPDT0ru2fRyH4GgJ/pZPQK+g/r5VgYAOqCh3lcdmZbuuTj1zXMZFrB4+lk9ltADANAOTfUu3YGeEPAAACyEKdPvJa+Z/Jp6sOaV8xwUwAIR8AAA7LIbliTZO2lXU7rX/FmS5B7zGhPA4hHwAADsptuVfN2k7Y2z7oN6r9Id6B0BDwDA7ih5Yi03+8DQlguzlKnp/uup39evS1YBrDlvtwcAAEAfDep9bON7s9S8Zv7BD0r9/v3zHxnAojIDDwDAznpLKRc/JL/86mRpeHPJ0YmH1zx48OC15t6BfnMf+A7q5x0RAYB2GNR7bjM8/X7OdE/9vR0YGtAi/aweAd9B/XwrAwAt8B9KTt1ueEPJB5qO/crUzz8m+d9PrXnG/EcGtEw/q8c58AAAzF35YMp3Z7jeSz7QVO81R267XO9fUO8Aq5wDDwDAfJXn5zmXj25pTvfBg39afnqDuQ4MoF0EPAAA81ResbLC9cpsIN2T3C5Ln6+/XfPQ+Q8OoE0EPAAAM1ZybPCglusNbWxK99uNbflATdQ7wDoCHgCAmSlfTr3e79d8zcqGTycpeUTT8WP1Xq5aqj88x+EBtJqr0HdQP6/HCADsrnI0denk6LYvbSbd3y/dgY3rZ/WYgQcAYOtumpLkX47WdfXeOPG+fs18qZ/p12dwgC0R8AAAbFJZy+1P5Mvls2V8fw5OfN36dF/Z/uFZDQ2gwwQ8AACbUcYny+uNavKq5Z2N6f6bKw+vHPlif/b+eo/Zjg+gs5wD30H9PBsEANgh5SdGn/+vJMmrmtI9I/W+7Ll5eJIrfFoBtqqf1WMGHgCADRuv9yQ/WfKspsPXp/vA22s5ln597AbYvvN2ewCL4/TRsn1HT+/2vwYAwJy8efxU9yRpqveaEzUnkuuNbX9YfcTD6iPUO8AWmIEHAODc3lxyn4xMv09J99ENX5XkYfU/D568UroDbJWAX7XvyJlj1+w9PH7/k101OK8DAGB3lRx801CWbzjdB1sfFN0OMAsuYjfm9NGyfylJcuDYmROH9uzuaLYT8P5kAYDtKEfWHr/paUlyn/zElNPds7TuVvD1wHyGBtDTi9gJ+PVWG34REn4r+vlWBgBm6PzRSYTfS749jfMKNU9JUj77s2tbbji3kQEk6Wv1CPhJzh4/OFhL386E7+dbGQDYlieVvGDkDu3n5xmDB49Nfq6h3gfpnqTUh9Tsn+sAAYb1s3oE/GSrCb90qh7Zt9uj2aR+vpUBgC17XckD8tSJu0qeOXH7arqvPP/ZiYcBzEk/q8dt5Cbbc+iKpSTJ0nOPn93doQAAzNPrGpbGlzxzYr3XPGW43p+Yn1XvADvDDHyj9k7C9/NnUQDAZpXX5ZkPzN0yPv3eNOue5E3rLiZ/H584gN3Qz+oR8B3Uz7cyALApq/WeoYCfku4/npU7ua94bfKyWj7s/nDAbuhn9bgPPABA7/x+yWvXbWyq969OfWySTHiJegfYSQIeAKBHnt+/hI8AACAASURBVJFyt1IflK8Z3ljyyYkH11yZ5PzkhcljR3c9S7kD7DhL6Duon4tJAIBzekbKPUr9rqF6n57uGbqZXJJP/Vrq9891gAAb1c/qEfAd1M+3MgDQqLxk9Pn/SHO6Z6jesxLwn3psktRfmcvoALagn9VjCT0AQKeVlyS/PvT8LzeY7uWxa3Pv0h1gEQh4AIDuekdJLhne0Lxm/vwkr8szkjzwuamXuzwdwMIR8AAAnfPWsvzg2168Ov1e8scTjx2k+8BfDrZcPsehAbBlzoHvoH6eDQIAJCnvHHla7/qfsrF0X355/VDNjecyMoCZ6mf1mIEHAOiKctfhT7Ln5R1N6Z7J9f7T6h1gkZmB76B+/iwKAPqu3HXkWd7ZdOD6dF/Z8S+zHRHA/PSzes7b7QEAALAtjylJedLwlqZ6r7mk5pLkbut2/It6B1h8ZuA7qJ8/iwKAHnrfyrXqbp/l6fcp6b5u2ytW9t1y5gMDmLd+Vo9z4AEA2qck712r9ydlWrp/S3LTyV9FugO0ihn4Durnz6IAoEfKa0ae5b80HVjzLUnGAv68/NGXfUwAWq6f1WMGHgBgof1dGXn6TVmr9w2ke5Kclz9afby/li/PcnQA7BwBDwCwkMqNBv/8piTJ3+WzIzs3lu5JygvfkR9693/IRUn+JDXp12wVQJcIeACABXJ+SpJPlhuObf+mDHr+lWmu97F0H9r+73U7QAc4B76D+nk2CAC0XfnF1B85s/LsDpOPyecmbq95YpLkzaOb75P6izMaHcBi6Wf1CPgO6udbGQDa60kpv1iG783+7vXHNKf77608vHp4+1/XF3yzWXegu/pZPQK+g/r5VgaANvpvJUlelm8d3TwS8E3pnpF6T5L35cFJPl+LdAc6r5/V4xx4AIBdUp72sun7N5zuSd6XB9/+piX/7DJ1AJ0l4AEAdkN52sqj35m8/9xr5kfc/ntKflu6A3SZgAcA2HHlhdN2Nqb7Df8un/270VvBJ8n3/Jf8tol3gO4T8AAAO+eLJdfPC5OPTNxb8pcTt9es3VXu9vVjNQ8e3w9ADwh4AID5K58d/LPps1dTumel3ssXP/uI65XjSc3NZz88ANpAwAMAzNELSp6Yzw5tePnYAVPT/R+SlC/urdcbTLKbaQfoNQEPADA35eATR54/fXx/jkx8Xc3dkuSS2+SPenaLJACauQ98B/XzjogAsFA+WPINOdiw8zuSlDxu4r7ldM9Ppja9HICeVo8ZeACAGftgmba3Od2PJkkuku4ATGQGvoP6+bMoAFgU5VFJkk9O2JOTTS+qOZrcM0nqA+c0LoAu6Wf1mIEHAJid5Xpft3lauv/KyiPpDsA0Ah4AYHvKLUaff/f4/oZ6X0338n8eWx89+3EB0DGW0HdQPxeTAMBOenWWT3P/7tJ0V/ZLMi3d353s/WJudIP/k9w79S7zGCNAl/WzegR8B/XzrQwAO6RcOvr8LZOPyscmbq85kDz9s7nDjd+ZRLoDbFE/q8cSegCAjSlPSd43umlCvTele5brPUluVNOvj5wAzIKABwDYgHLx6PNbTDjk3On+9NQ7zHRYAPSIgAcAaFbemiT50XU7Pjp+YOOa+cuSlItenKT+7WwHB0C/CHgAgAbL9X6uo6am+/Jj6Q7Atgl4AIARJb+TpJZvXdmwfvp99cimdL/56s3kyre8uL5jtgMEoKcEPADAkHLlyuXl3pZk/U3dl4/KnzR9gZqbJynf8uIkecdb6s+UuGIdALPgNnId1M8bKgDANn2+5Ctz5aQ9I5eaP2e63yAf/WJ9S5L6M/fJT/vrGGAu+lk9Ar6D+vlWBoCtKzcbff5Do0/XAr6p3r8qNcnnki/46xdgR/SzegR8B/XzrQwAm1X+Nadvkm/LzRr2D2f8W6an+6f8rQuws/pZPc6BBwD6qPxr6k3+34aOzP+auL3mP+6tf3JmpqMCgCnMwHdQP38WBQCbUwb1/pBph+Sfm3bV/L8kqftnOygANqif1SPgO6ifb2UA2KDLSv5HcsfcM0nygYnHSHeABdfP6hHwHdTPtzIAbEi5cPT5xycc0lDvNR8s9dU1T5zDsADYnH5Wj3PgAYDeGK/3dfunpntyG/UOwC4yA99B/fxZFACcQ3l88vpJOz6eaen+iT+vN717/K0KsFj6WT0CvoP6+VYGgInuVZYfvC2Tp99L3tf02rfXSHeAxdTP6rGEHgDopnL33PMvlh+/LY+fcEBzuvftEyEArSDgAYAuKtdNT/CmepfuACwsAQ8AdE65LnlO486mdM89Uv9sbmMCgO06b7cHAAAwMyV3/0JJQ73fr+R9E+u95h4195jz0ABgu8zAAwBdUO6XJP/xDX9+gzxvwt78ctMLa26fxNw7AItPwAMArfeksnx/9uckyT8O7yr5+aZX1dw+ud/ZXLXHae8AtIHbyHVQP2+oAEBPlduOPn/ScMA31XvNDyf5cq5Kcp6/MAFaqJ/VI+A7qJ9vZQD6aLzeVx1oSvcvDd3X/a3JPn9bArRTP6tHwHdQP9/KAPRK+UTqv/vO5P0TduXaiS+p+dEkp/PswVPpDtBq/aweAd9B/XwrA9Aj5fuSD6+v96Z0z0q9pz57nsMCYOf0s3pcxA4AaJXyfRO2nTPdAaD9BDwA0A63Srmu7BvbuOF0v3Xq5XMZFgDsFAEPALTArVKuK3dJ/nV4Y/Pp7hckTxp6Lt0B6ALnwHdQP88GAaCr7lLyV7lgdNv5JX818eCaC5I8KX+f5AX152p+fM6jA2B39LN6BHwH9fOtDEAnra/3kg9OPLIOHVbq46Q7QLf1s3osoQcAFlTJK2qeO/R0crpnpN7vVepP19x5viMDgN1gBr6D+vmzKAC65HUpD7y21tveO/lwzpHud0lunNxo5fkbdmaEAOyuflaPGXgAYIE8ugz+WR+1sqV5zfw3JOevPr193vC+fn2KA6B3zMB3UD9/FgVAB7ynrD2+Q+5d8raJh9V8w8rD85P8Td55p/9c8hp/8QH0SD+rxww8ALAYym/fYfVhLp14yFC6r7rxnWqSfn2AA6CfBDwAsNvKb609zPc2HbWu3s9PknpqToMCgEVjCX0H9XMxCQBttVLvm0n3wdZr5zMgAFqgn9VjBh4A2HF/VnKvWwxvKPnoxANr7pVkcC36VWfrB/dYMw9A/wh4AGBHlfx6Har35nR/VfKslWdfO7xrT66d09gAYJFZQt9B/VxMAkA7lEGu3ynnSPflo5OfHd714vq2R5l7B6Cv1SPgO6ifb2UAWmCl3pvSPSP1nqQkeUceere/z4suKNIdgFX9rB5L6Kc5fbTsX2revXSqHtm3Y4MBgDYqOa+Wpw89fWrTkTW3WL/xPXloknpB3CgOAM7b7QEsorPHD5ZSSpla70mW9g8OK0dP78zAAKBFfq7k50o2Uu81t5hU7yXJmeSuyh0Akmx1Cf05ZqY3ZiHnr88eP7j38MmtvHKB/nX6uZgEgMXx+JKr8sDhLSWvm3jkpG5/4cqD+6feZNZDA6Aj+lk9ZuCHnT1++XC9L52q051aGjp4/8HjZ3d8xACwaMbqveR1E+u9YdZ9UO/3L/U26h0Axgj4IadfspzvB46dqbWee0Z935Faaz1z7ECS5OThl1hKD0BflR9IymUpl12Vy5a3NKR7Gk53T/KpXDpI95p7zGugANBa27gK/dpq8wPHzpw4tGds99oy+4m7F9DKiLewGH4bL52Dfi4mAWA3la8YeZYvNB1Y84yVh88f3v6pfORwLa9xpToANqaf1bPlGfjTR/cePrk8Vz0xz/cdWVljfvLw5W1YXH722muS5MCxyzaf4PsuG8zCX3NtC/5FAWCGyuM2WO81D6h5wNCGJyd/M/j16PrRr65R7wAw3RYD/vTR5Qnnc0yt7zuynPAtWFx+5r0nk+TOF2xlscCeC+6cJCffe2amYypbMtMhAECDl5WUr09+d3VDyRcm1vu6dB94dJLybbcoL7vFi6Q7AGzA1gJ+ebJ66f7nnqved/+lJFm6evELHgDYqPJreeStkyQfzabTPRmk+yNuUU+n/uAchwkAXXL9Lb1qebK6W/ZeeCA5mWuuPZt9m56EX1l/f+HemY5pa2d0mIQHYC5uVcp1Fyap5adWt0093f0G67ZdnKQ84sok9fgcRggAnbatq9Bv5Izv01cvJbMv2zlYWQW/leX+K9ev39r6ewBYbCU3K/dJubDmPu/Jfd6TJPmJkn8s+ceJx9fcYFK9J/XK1CvrcfUOAFuxtYBfXhd/8vDeo1Nj9+zxg4Mr0R+49OLFL9vlf6tN39F99d+yDT+mAIDNKn9ay2vrW/505devJdl8uv9B6h/MdZgA0HlbvY3c2j3kMvnmaec8YBGNDHoDw167Vd7Gjt8h/byhAgBzUZ4w+vz7Syb/XTep2/9rkuTxqd8683EB0HP9rJ6t3wd+LHabteU28ANjTb5xC/Sv2c+3MgAz9P0pv1DqzTJS7yVXTTx48pR7kvypdAdgTvpZPVsP+GQjtbsok9KbsumIX7B/y36+lQGYlUG9J1kN+KZ0T1Kzdi36VeUJ/5akvmBuQwSg9/pZPdsL+IHJc/ELFrVbco6SX9R/xX6+lQGYiV9OefyP1Y/9/HK9byDdx5UnfEi6AzBv/ayeWQQ8C6afb2UAZqA8e+jJB5vXzD8+uXeS5CdGXl0/XPPFuQ0OANb0s3q2dh94AKAjPlByu9xxdNsjS3584sE1jx/d8LODf1yZ/5qkX5+hAGDHmYHvoH7+LAqATSsfT5JcPLIt75p47Fi6X5lfGn76TH/nALCz+lk9ZuABoHfKC1Mf9/HxjQ3pngkT79//zJ8teUq/PjMBwK4T8ADQF/cteWNenZG17j+ZzaX7YOu3WS8PADvPEvoO6udiEgDOofz86PPbJ0l+snnN/EXJI5MPDm98QL0qyevUOwC7rZ/VYwYeAHqg/Hxyzfi2/NjEY2suGnr2DUk+nh+7+Y/mu55dpDsA7CIBDwB9MFLvJf/fxING033l4Fv+WD78+pr7WTYPALtLwANA1w0tnm9K90yo90cub/9wkvvNY1wAwKYIeADorPKmJKm5JptL95WX3/LHYtodABaGgAeALirXJo9Zbe+S1088quYHk4cOrkW/9tJb/u3y3g/Pb3wAwKYJeADonPKg5IvLD6el+6q3JClPu1nunXp/U+4AsKAEPAB0x9+X3DYPGjzeWLonyYHcLEn96bkODQDYLgEPAB3x92X5QckfNB1Txy9Hd+mBPOSkOXcAaIPStxvf90EpJYk/WYB++aaS93+25EZN+4fS/dZDW18210EBwJz0s3rMwANAmz2+lJfWJPVzz2mq93Wz7gOXznNYAMDsmYHvoH7+LAqgj8ryaeslT5+4vyHdn5Dk5nnIx/xFAUBr9bN6BHwH9fOtDNAv5TuW/5k3TtzfkO65ea5OIt0BaLt+Vo8l9ADQNuU70pzuSWoeuHobuTHSHQDaywx8B/XzZ1EA/TH4Pj9RzU8lf77ybLTh69VzHBMA7Kx+Vo8ZeABojanpfu/kxkmSu680/PLf8n+Z379bvz7eAEA3CXgAWHRPLknyC5lc7zX3XrftO1cfXZArrlXvANAJltB3UD8XkwB0U3lMkpIXTdw5Kd0H16676crTx6XecD4jA4Dd1M/qMQMPAAunPCFJ6lWP2Uy6r7rp0HHqHQC6Q8ADwGIpT8gVV+W5aTzffWq9rx50xUwHBQDsPkvoO6ifi0kA2u7GJVcmSX6q4Vz3JDWPTv5q2lepfzrjYQHAQupn9Qj4DurnWxmglZ5WcuQXhjeU/MjEA2sePfSsoeHVOwC90c/qsYQeAHbBf0t5WXl+8vxk+ZNHyZMnHjma7gBAf5mB76B+/iwKoEVW6n3ZltJ9ZBL+evnTL/muD0Cf9LN6zMADwA4qlyR5Wb49+e0kJW9qOvDpqcljGnY+5cn5xhesPPmlWr4020ECAAtJwAPAjrhnydu/ffXZlHSv+YUkz5j6xT6W/FItSR6XuroIHwDoNkvoO6ifi0kAFlp5cJLkM8vPGuq95vnL+5Nn5ElJnjo+Cf+U7883/rpv8AD0Xj+rR8B3UD/fygCLqeRsLY9NMqj3c6X7yotWAj7JP69sfY7v6wCwop/VYwk9AMzFh1K+vtx09WNFyScmHlbz7es3rtb7gHQHACLgAWAeSn6tlpuuPJ6c7plc72X10VN1OwAwxBL6DurnYhKAxVGelfoTd07+cTPp/tDl19a/qC98eR7rezgATNPP6hHwHdTPtzLAoiiHkySva14zf9PkLqPbHprkyfXJz3c9eQDYmH5Wj4DvoH6+lQEWQjmcpOT4xJ01N115OBLwT65vku4AsCn9rB4B30H9fCsD7LxXl5Gnb0mekzLxyKF0H1gO+P9e35TkV9U7AGxSP6vHRewAYNPKA/I7/zffnf+5tiU/03TwunpPcpMk/72+VroDABtnBr6D+vmzKIAdU26T/3Mmj16p902me5L9pb6k5mvnMzoA6IV+Vo+A76B+vpUBdki5+8iz/MXEo2rulPzj5K9Q/3nmgwKAvuln9Qj4DurnWxlg7sqvJC9ee9aY7oeSJH+VZF3D3zr1mvkMDgD6pZ/V4xx4ANiA8itrDxvT/X8MFftdkr9Kbr32qmPX1ENzHCAA0HkCHgCalXcMPXlxU7onqfnpdduG7hVXj/VrggAAmAMBDwANyjuSLyRJ3l7yw01H1Xzr0LNbT1g2DwAwCwIeAJoM6j1N9T6a7gM3Gi/2+vMzHxYA0E8CHgAmKe9IUnKviTsnpfuyH81ysf+8RfMAwEy5Cn0H9fN6jACz8vGU+5b6VykT9zak+39Okvq0OQ4LABjSz+oR8B3Uz7cywEw8uOS1Deme5on3csmf1z+a25gAgHX6WT0CvoP6+VYG2LLjKXcqNcm3TEv3X155+OLh7eWSP68fKnmvb7kAsKP6WT0CvoP6+VYG2JQ3DaX6TZM013vN21Yevn14+6E87vjtpTsA7I5+Vo+A76B+vpUBNuguKS8oI98hLzl3uo84lHv+5qNSXzT7sQEAG9TP6nEVegB64dZrkb72N31Tur9z+Zg/m7j3eM3xGY4MAGBjzMB3UD9/FgXQ5MRopN8ySXO6Z63ek+Quow1/NPc88uWS4hssAOyyflaPgO+gfr6VAcaVvx9+diK3HTx42MbSfeC31x1zxDdXAFgA/aweAd9B/XwrA4woDx19/tzlzbndxMPXp/vAcMBLdwBYHP2sHgHfQf18KwMkKV+VJPUzD52wK78z8SV/nHrThq925cqD1/iGCgALpp/V4yJ2AHRFecbEv8OnpPs5v6R0BwAWhxn4Durnz6KAvivPWHm0drf2pnTPunofm4S/y1eWfM53UQBYXP2sHgHfQf18KwO99bUlT0x+Kjcc3ljy+abjX5malWvRr7qk3rXe8J3LT6Q7ACy8flaPJfQAtFb5piQfTpIPjWxuqPea70meeyJJcihJ8k/1rknqD7yzpuZzcxwpAMD2CXgA2qTke5P8YXnVffNNk/ZOSfdk6GZyd6olyT/+QPLympfPZagAALMl4AFog/KGwT9rHpfkjSP7PpQNpHuSwc3kDp4t+fp6cHAOvHQHANpDwAOwwMqnkyRvHds8PP0+5XT3mq8cfvqUertnpWYDF58HAFhAAh6AhXRNyTe/aHTTBWOHlLy/6dXr0v13npX6rFmNDQBgN7gKfQf183qMQJeUP0h90Isbdl6QpOR+Ta8dS/fc4vP5iO+HANA1/aweM/AALJBnp7y+1MY6T9Jc7+PpnqS6sjwA0B1m4Duonz+LAjqg3Dz143+bJDk1+YA8euL2Cem+vEPAA0A39bN6zMADsPtKbpmbf2Sl3ice0JTu37jy8EOjO6Q7ANA1Ah6AXVZekfzeRxr3NqR7Ruo9ydeXw39Xf2OmIwMAWCQCHoDdUfK/k9y9/NDdkyRvz/j0+9R0f32SN+Y7B0/vWwcbAQC6TMADsAtK/nd++Ifu/itN+/eX3GnijkG6719J91OqHQDoDRex66B+Xs4BaItvLHl/zh/eco98MkMz8M3p/qIk5YGPqr8/5yECAAuvn9Uj4Duon29lYKE9uyw/+PHXJQ9rOOj09HTPQx6dV/vOBgAkfa0eAb/q9NGyf2m7X2TpVD2ybwaD2ZZ+vpWBxVQ+tfa4nv9/k0wM+JJPrd+4/Kr8zf1zx6t9SwMAhvSzepwDD8C8lE+lnv/S0W1PHj9maroPHqh3AIAI+CH7jpw5ds3ewyd3exwAHXFdqV+3Z3TT08YOaar31XRPvePMxwUA0FKW0I9ZW0h/4NiZE4f2TD96MfVzMQmwIEquPVouSPI/s3fS/k+tHDY53e+emuTPvy/11+cyPACgG/pZPQJ+vdWGb2vC9/OtDOy6x5YkufXK06aAb551/+rB5eiTvN03MABgqn5Wj4Cf5Ozxg4O19O1M+H6+lYGd9PtZvqr8g8pDhrc/Nq8eBPzEei852/QFV+tdugMAG9HP6hHwk60m/EJcVn6T+vlWBnZOecTKo89N3P+0vHos4Ken+8qjT85icABAL/Szes7b7QEsqD2HrlhKkiw993jjp875K1uye+MFOu4TZbjeN6qp3mu+erne6yfVOwDAOZmBb7QIk/DbqXF/ssAslccmScbuCfeA5hf8Raal++tWHn3X9ocGAPRQP2fgBXwH9fOtDMxReWzyr8krG3ZPyPiS3514aM2e5Gmpj5zd4ACAPupn9bgPPACN/rrkm/MDySb+amxK9yzXe9Q7AMDWmIHvoH7+LAqYuZV6T1Kbp98HHpANpfuZGQ4PAOizflaPi9gBMMEHs3oNjg39vdhU70dT86Saeka9AwBsk4DftLPHD5ZSSjm4m5enB5ib15ekfOkbyhdXpt/PoeTfJtf7N9da6/+sqb8w4xECAPSTc+ABGFJefr+NH5t/m7i9b4vZAAB2hhl4AJKk5EzKy5v3P2z04H9T7wAAO8wMPABJ+cPm7C7Dp8E3dXukOwDAnJmBB+i98odJkg+t2/Gdo08fNmXWXb0DAMybGXiAfit/vZGDSn5t4g7dDgCwYwQ8QH+VH0/NR6Ye8p0lPzhxh3QHANhhAh6gp0reVp99w6kHTE73qHcAgN0g4AF64WNl5Okt6tvy4/dKhtfPf/3qafDSHQBgARUfxbqnlBIfsoFh5aLhZx/LuwYPbp6/zsgS+g+lud59VwEAFkc/q0fAd1A/38rAeuWrk6R++qKJez+Wd918eQZ+ueHL+GXnl/l+AgAsmn5WjyX0AF1T7pskefu5j/xYvnnQ8NIdAGDxmYHvoH7+LAoYKPdN3p8k+UTSPP0+8LG86xYpTXt9GwEAFlY/q8cMPECHvLnk/TVZrvfpSt6dhnrv29+FAACtYAa+g/r5syjoubul/FQZ+b/+wFclzTPwJe+e/IXqxTVvnvHgAABmrZ/VYwYeoN1KbpvkZBn/2+vkp5uOb0r3tyaph++dYzMcHQAAM2MGvoP6+bMo6Knyx8PPXpVLxvYf+Kq1SfgNpLvvGwBAO/SzegR8B/XzrQy9Ur4mSeon/3ji3rGM/95c1JjuvlcAAO3Uz+qxhB6gNUpeVsuLkgz9TfWM6S854CLzAABdYQa+g/r5syjotpIHJI8Y1Psk4xk/mIRvqnffHwCAtutn9ZiBB1h0JQ/Ik1+XJGkK+HHSHQCge8zAd1A/fxYFXVUetvygnvgPUw9cnoQv+U8Td/uewP/f3v2FSHfehx3/PapU2mAayzdVym5RDBUYVNJAQ7pLXgsaUAppi/16N3g3plALginyheWG+qbe2SYFtbElSlyIA/JFrOwW3tVrFyJoXuiFonSXkFJaqguhmwrvEOxcRGrTFlITTi9md3b+nZnZnX/nOc/ngy72nTOzOjA7M+c7z3OeAwBtUmb1GIEHaK6vp/ja3HeuS/co77MNAKCVBDxAw6Q/i+tF478cERFfj5+Y8Yg4DwPvAABtZwp9C5U5mQRaIv3b4X//zMDP/2TC3eO87jd5EwAAWqzM6nls0zsAwLXReo+I34/4/d5PX4//NHr3mnqvqqq0DzMAgBKYQg/QDOm3p2//cvy3m/vWp/sydwkAgCYxhb6FypxMAnlLvx3x4dR7/ExEfD1+4p+6PhwAQKnVYwQeYMNSfL6Kn53jbn+rblNpH10AAGUS8ACb80cp/bV/XKUZ9Z7ixbpN0h0AoBym0LdQmZNJICd/nOKv/ovhmz5eN4W+rt69xgGAkpVZPQK+hcr8U4aGS38pfvnPrn7+1/ErNff62NBDpDsAQI0yq8dl5ABW7N+kwXqfR4oXJ9a768MBAJTMCHwLlfldFDTQm8MLxr8VEdOG3yMiUny1bpMXNQBAX5nVYxE7gJV4c+xyb89Nvb90BwBgOgEPsGy7KX4qIm5R3XX1Lt0BAOgT8ABLtZvS/ep3fnneu9cOvH+vqraXtU8AALSBRewAlindnzFm/mb886t7xlcn1/v3qqpS7wAAjDICD7A8u+lzF7MnvTvdHQCAOxDwAItKP3n1w+f+64z8/vsxtrTdNekOAMB0LiPXQmVeUAE25ScHkvzZgds/O3bPunr3agUAuK0yq8cIPMAdvZsiIk6v//kv6+8p3QEAWJwR+BYq87soWLN3a+bCD2b8Z6U7AMBqlFk9VqEHuLX0X2bf5/VI6h0AgCUyAt9CZX4XBetUN/ze8wkr1QEArFiZ1SPgW6jMP2VYn/SNwX+9Gy8O/rOu3r0kAQCWqMzqEfAtVOafMqxaejciovrENyZufTderEv3z0X1bS9HAIClKrN6rEIPMFv6ztSt8cWIL47fLt0BAFgiAQ8wQ7/eq/ujw+9pUrdf3bmw74MBAFg1AQ9wF9IdAIA1E/AA00ycPF9X79IdAIDVcR14gHo/PbouXYovTqz3Kn69+uO17BIAAKWyCn0LlbkeIyzT30kREX/wkcHbUvzvifet4tcjDzmdzgAAGXdJREFUIlU/W8UnVr9nAABElFo9ptADXPvq9Xj78xG/clPvdeke1/UeEeodAIBVE/AAERHx1RRPjt42T7pH9eLK9gkAAG4IeKBo6ef6P1YRUf29FBHx0kdiSr0/rCIiRVT/McU3ypq1BQDABgl4oFwD9X59y3/oBfno2nU9VXzkatun/zziF+PT6h0AgPWxiF0LlbmcA9zBeMDHo2npfvWo6sOIqF583PA7AMCmlFk9Ar6FyvxThttKPxfVo39188/4St09B+s9IlL1YRV/YYV7BgDALGVWjyn0QIl+K1L16OXez/One1wPvwMAwPoJeKA4vzVwintdvY+n+/Xtxt4BANiMxza9AwAb8I/S8ym+MrHeq3g5nq/ilbEl6Ks/jepP17FzAAAwiXPgW6jMs0FgTp9K8e9rF5m/nlRf/Wr16nXAf8lLCQCgccqsHlPogWKkd1L8zbqNVTw/epN0BwCgSYzAt1CZ30VBnfRTERHxnyePusdouv/diIjqn612nwAAWEyZ1eMceKDNptd7Fc+PD7yn6ldXvFMAAHAXptAD7fTkVbPXpnvdA6uwUh0AAE1kCn0LlTmZBAY9meLD26d7RET1uyvZIQAAlqrM6jECD7RN7918oir+e0REfLlms3oHAKC5BDzQHnOkOwAA5MoU+hYqczIJhZuS7h+NKiI+iHeGbx4ehDf2DgCQlTKrR8C3UJl/ypSsrt576d4zFvDXqmdXsUsAAKxUmdUj4FuozD9lyjRPuveNNrx0BwDIVpnVI+BbqMw/ZUpTO2e++pOI+Gh6cuLGD/92/Pkfpscm5T0AABkps3oe2/QONFL3dD8N2D/tzvuA44u17CCUrPdim7yt+pPpj63+MNQ7AACZEvCjLo5T2j48G7zp7HBbm0MDzEj3gXr/sPpgZPsHVXyg3AEAyJmAH3JxnHY7Nds6u3MMxQOrUpfuT0T1RFRPpCd7//Vv/7D64MPqg79cpW9W6ZtV7Rr1AACQCwE/oHv6Sufqx8551Xd5snd169nhtoaHtasbeK++FU+MzYcfzPgfi49FxC9E9QumzQMAkD8Bf+Pitd7M+b2Ty+po5+b2rYMHNxWv4WGNatO9quZZsOStiD+S7gAAtIWA7+u+37vCVOelg63xrVsHD6rzTkRoeFiHKae799P9L36+Ns6fSE9+LT72N9Q7AAAtIuD7Lt87i4joPL9Td4+dIw0PKzc93fv1nuI3pv+ef7jk/QIAgA17fNM7kJmdo+o80m4n4uxw+/jpoan2wMKmpPtnUnxmcOOswXXD7wAAtIwR+FvbObo+H76zaxgelmX66e6fGdtyP33hH6xjvwAAoCkEfN/2M3sREZ1HM6/3vnXw4Krhzw63XR4eFrTgSnUT/T+j7wAAtI6A79u6d79X8LtzNPnWwauG4WFRM1eqeznSy5HGh9/7DMIDAFAOAX/juuCjs5tmR/nWwYObFe22exegW7p0JyvZFViqeVaqeznu8sf8w+o3DL8DANBK6c4zVFupe7o/1OKd8xnL1F0cp93OwL9nPuB2FqlxzyyNNfP6cD0vR/pK+ubgLZ+JXxp/1MNqaDn6Kr6w8A4CANB0vUPK0qrHCPyQm7PbIyJi75ntGQ/YOaoGH7Bs1Z2sbHdgUfOf7j5e7xHxRvzmG/GbK9w/AABoMAE/auvgQXWrKL/1A6BEq1ipLoaH36v4guF3AABazBT6FipzMgmNNeVMkGl/pWnaSHt/Lv0b/swBAIpUZvU8vukdAFrrjuk+n1+rer+8rLdsAABKZgr9rXVP91NKaY6F6qFkMxeZX8SvVenjUX1cvQMAUBIj8MCSzbnIfN/rw3f/3BxVLt0BACiQEXhgae6wUt3rY3d/PcXrKZ6adMW4nimbAACgxYzAA0uw0tPdAQCAEPDAghZJ9/Hh976vRTwVv/T94au+98bev+8LAQAAiiTggbu77enut2W2PAAA9DkHHriLO5zuPuL/RP34e0RE/GDsC8YfPG74HQCAchmBB25n1aPug8YbHgAAimUEHphX3ah73L7eH6b43VT9SETvv3HjF5OrfhjVD2/1PwEAgFZJFohun15ieWZZouUuMv+w5pf934Gf57kaPAAAxSqzeozAAzNMGXVfxTvmG1V6o5pxejwAABTICaZArQUnzH9r+NGfryLqh98j4kcivi3dAQCghoAHJlj8XPdvjf2C3i0fvftOAQBA0QQ8MGQpp7u/GSni7rPrv7PAYwEAoK0EPHBlWSvVvRnpB0mBAwDAkgl4IGKNV3f/sH4W/berZOwdAADqCHgo3RLTPX3/6qGv3WlP1DsAAEwh4KFcyx11v6732e5Xo2vR31fuAAAwSyrtwvcl6FWZZ5YplnW6+9DvHA74135s8t0+7w8TAICFlVk9RuChLKtI97jN8DsAAHA3RuBbqMzvopjHXHPm078b3vbZuX7zpIAfGYQ39g4AwLKUWT0CvoXK/FNmunlPdx+p95v7zcj46SPwv/NUioift0YdAABLUmb1mEIPLbe268NNId0BAGBxRuBbqMzvohg35+nu6bvXN366Zvj9avMdB+Grp6Y/DgAAbq3M6jECDy00/0p1/XoHAAAaTsBD22xqznz11OggvLF3AABYIgEP7XHbdF/68LtiBwCA1Xls0zsALEFKaWK9V1VVO/D+46P3T9+pP8t9vovJAQAAq2MEHvI2/+nuQ8bqHQAAaDgj8JCrulH3mD7wPv13jg/CV581/A4AAE3gMnItVOYFFYpyx1H3voHh9/Tq5PtXn7r9bgEAwLqUWT2m0ENmNrXIPAAAsFlG4FuozO+iSrC0dP/x9Nz7Qw/5ve8M/DZj7wAANF6Z1SPgW6jMP+V2W+6o+3M1E/DfejpFRPwPfzkAADRdmdVjCj002qKnu9+WegcAgKYyAt9CZX4X1T4rSve64feet/zVAACQgzKrxwg8NJGV6gAAgBECHpplKeme4g+GHhs/vdA+AQAADSDgoSmWNeo+Uu/9W2Q8AABk7bFN7wAQKaW1zZmfcpa7E+ABAKDJBDxs0vR0v0O9jw+/z7MJAABoPlPoYWM2tVLdW9XoWvTG3gEAoPkEPGzA7HT/0eE7/M/1TaQHAACaScDDWs016v6jY/fp3bLsjAcAADLiHHhYk/WsVDdlqXmr0AMAQNYEPKzc7VaqGx9+n2cTAADQdmnVy2Wxfr1W9Mw2xK1H3adX+nyz6EcWnDf2DgBAy5RZPQK+hcr8U26gO06YX0bAAwBAu5VZPRaxg+Xb1PXhAACAFjMC30JlfhfVEHXpHnM+I+mvD/3zr1wO/dPwOwAARESp1SPgW6jMP+WNWzTdY6ze+/oZL+ABACAiSq0eU+hhCVY+Z166AwBA8QQ8LGRp6V43/B4R/2v7dr8KAABoIwEPd2SlOgAAYJ0EPNzaEk53BwAAuCUBD7cg3QEAgE15bNM7ANmYMmd+CfVefe8umwAAgGIYgYfZnO4OAABsnOvAt1CZV0RckRWle4qfH/pt8eb1huG16I29AwDAJGVWj4BvoTL/lJdudae7j9T7za/tZzwAADBVmdVjCj2MslIdAADQQBaxgyGrXamufvh9+iYAAAAj8HDFSnUAAECTCXiQ7gAAQAYEPEVzujsAAJAL58BTqJTSqk93n/zL65eatwo9AAAwhRF4SmTOPAAAkB3XgW+hMq+IOKeGpPvIgvPG3gEA4FbKrB4B30Jl/inP1JB0BwAAFldm9ZhCT/tZqQ4AAGgBAU+brSHdPxVD/4vvhm8EAACAlTCFvoXKnEwybg1z5kfqvU/GAwDASpVZPUbgaSGnuwMAAO3jOvC31T3dT4P2T7ub3iVu1F3dfRWXdq8bfp++CQAA4G4E/CQXx5MD/eI4pe3Ds6H7nh1up3R8se5dZFRduoeBdwAAoBUE/Iju6X5Ku52bG84Ot3sR3z3dH7x9SGdXw2/O9HRX7wAAQDsI+CEXx6MD7BERcXb4pdOLtx9eb+mcVzfOO1c37ppMv3bSHQAAKIeAH9A9faXT++km0S9P9iIizg53e2W/d3JZHe0MPGjn6Drizw5fMwq/RhtP9ylLzVuFHgAAWDoBf6N7NcbeOR9I9K2DB9dj7BGxd/Lqwdb4I3de6GV+55GCX4d1rlQHAADQEAK+76rf905e2BnecJ3nEXv3703I94jYund/LyLinffNol+ppqX7+Ej7d6My/A4AAKyC68D3Xb53FhHx7NNjjb517/5enJ1N3HZ9l6efjTiLs/cuI+ruwyLqJszHpheZl+sAAMB6GIGfx9bTz256FwpmpToAAIAQ8OOmzYKv39Z9/53V7E7ppDsAAECPgO/bfqa33vzDt8crfeeoqqqqejBpBbuI6M+/7zy/U3MHbqtpp7sDAABsloDvu16I7g5Xg7s43u1EROw9s73svSqRdAcAABiXFNGAi+PUK/GRa8nN95C5HzO/KSu3zZTjM9vYleoAAIBG6bVDaZlgBH7QzlH/mu+d3ZTS8dSh+IvjlG7qPTrnS673olipDgAAYDoBP2znqOo3/KwZ8VcnzUfEKgbfI+K6XW9r+fuxYtIdAABgJgE/ZueoqnoVX3/Z90Gd86paSb2XwOnuAAAAc3IOfAtt5myQ9HtD/6w+OePu9aPuy9ojAACgrco8B17At9AG/pRH6r1vUsZbqQ4AAFhQmQFvCv2tdU/3U0op7Z+OXy+eqaxUBwAAcGcCnoXVDb8Pb5LuAAAAi3h80ztA+zndHQAAYHECnhVK8VxMinfpDgAAcFsCnpVI8VzdJvUOAABwBwKehVWfHDrXXboDAACsgIBnmerqXboDAAAsSMCzDNUnrVQHAACwUgKeRUl3AACANUgqq316Rb2GZ7Yu3dfzfwcAAIq1tuppFCPw3IV0BwAAWDMBz62ZMw8AALB+Ap5bkO4AAACbIuCZi3QHAADYLAHPDE53BwAAaAIBTy3pDgAA0BwCnsnMmQcAAGgUAc8o6Q4AANBAAp4b0h0AAKCxBDwRTncHAABoPAFfOukOAACQBQFfNHPmAQAAciHgCyXdAQAA8iLgiyPdAQAAciTgC+J0dwAAgHwJ+NaakusL3hkAAID1e2zTOwAAAADMlsydplF6cwH8WZbAc10Oz3U5PNfl8FwXwhNdDs91LozAAwAAQAYEPAAAAGRAwAMAAEAGBDwAAABkQMADAABABgQ8AAAAZEDAAwAAQAYEPAAAAGRAwAMAAEAGBDwAAABkQMADAABABgQ8AAAAZEDAAwAAQAYEPAAAAGRAwAMAAEAGBDwAAABkQMADAABABgQ8AAAAZCBVVbXpfQAAAABmMAIPAAAAGRDwAAAAkAEBDwAAABkQ8AAAAJABAQ8AAAAZEPAAAACQAQEPAAAAGRDwAAAAkAEBDwAAABkQ8AAAAJABAQ8AAAAZEPAAAACQAQEPAAAAGRDwAAAAkAEBDwAAABkQ8AAAAJABAQ8AAAAZEPAAAACQAQEPAAAAGRDwAAAAkAEBDwAAABkQ8AAAAJABAQ8AAAAZEPAAAACQAQEPAAAAGRDwAAAAkAEBTyN1T/fTkP3T7qb3idUYe64922W4OE4ppeOLTe8HS9J7Qr2MS+OF3F4+ncvhqDs3Ap6m6Z7up7R9eDZ869nhtmOE1rk4ThOea892Abqn+7udTe8Ey3JxnFIafULPDrcdBLadF3Jb+XQuh6PuLAl4GqV7uj/hE6Ovs+vdpDUujseO+Id5tlvr4njay5y8TG24s8Ntr+LW8kJuKZ/O5XDUnSsBT4N0T7/Ufx/ZO7msbpx3ru/TecWITht0T1/pXP88/FwPPNnR2fXR0Tbd0/0Zx4bkpO5de+A926u4jbyQW8unczkcdedLwNMc3bcf9t5I9k4uqwcHWwObdo767yZnD9/2XpK9i9euPzQ65yPPdewcVZcne1f/6DxyjNAe3dP9SZMyyVftK3nwZewAsGW8kNvMp3M5HHVnTMDTGP13ks5Lwx8ZPTsvXH1snL13uc7dYgUuHnV6P3TOj3YmbN86eLV/7O8YoRWGz6jsnPQPAsnZ1FfyzcvYAWBreCG3nU/ncjjqzpmApzG2Dh70Zu5M/NCIuHzPF/4t0X3/nd4Pe89s19xl6+ln17Y7rNzgnMzOeVUd3dvgzrA0/Vdy5/mJ79pb9+4r+DbxQm49n84FcdSds8c3vQMwp5uvhScfKpKPrYMH1cGc960/iiA7nfO6AwVydDP/su5VunXv/l6cnV0N4UwY4yFHXsjt5dOZa466G03Ak4HBVTJrZnXRMtefHHv37znqz99tDgrJz7NPz3yVvvN+N3a8ljPnhYxP5xI46m4+U+hprovj1DPwPuJ7/yL0J2o6QoDGmmOCpdm20Co+nVvMUXdGBDzQMP0Lm+ydvDppZRWgScykhTL4dIZmEPA0Vn8tlRud3ZT2XZCo1W5mbnXOHzhAgHawjjFkzqdzyznqzomAp7H662P29K9Iebh97NIlLXVxnPrHB+ZtQXsYpYec+XRuP0fdORHwrEf/zJpxc365t3PUfzfpvOL7wAa763N9cZx2OxHh+CAfi7+uAWg2n84lctTdaAKejOy8cOKiwu10cZyujg/2Ti4dH0AOtp+5ekOunx4/YU4mkBGfzgVz1N1cAp6cWNG4jbqn+wNf7juzDjLRf0N+5/2Zx3ZzXGkOaBafzqVz1N1YrgPPeuwcVdXRpneCtbjNcz1wsdG9k0uHB7nxui7b9jN7EWdXQ/CTXrzdtx9evbydAg9Z8ekMDWYEnqbonu7PPHf24lGn94PRnDa4OT7YO7n05T7kpj8603k0cY2jm353yWjIiE/nAjjqzpqApym27t2/OtXm8LXJ6112T1/p9H7qPO80rOxdHN8cHzg8gBztPN/p/dDZHV+muH/JaP0OOfHpXARH3VkT8DRG/70kOrtp9GCwe7qfbmZzveCdJHPd0/3+iXWODyBX/TWOorM7NI5zc9GpiM5LXuOQCZ/OxXDUnTMBT3NsHbx6fSwYnd3ha1L1DwV9pLTBxWs3z+fIMz3G9UehuQbfts8Ot/uv26sEiIjOuYWrIRc+nQviqDtjAp4m2Tp40L/s5EQuQdoGN7OygNxtHTyof9feO7n0lg258OlcGEfd2RLwNM3OUVVVl/0vBa/tnVxWlfeRVrh872z2nYBc7BxV1dhR4N7JZWX1K8iJT+cCOerOUqqqatP7AAAAAMxgBB4AAAAyIOABAAAgAwIeAAAAMiDgAQAAIAMCHgAAADIg4AEAACADAh4AAAAyIOABAAAgAwIeAAAAMiDgAQAAIAMCHgAAADIg4AEAACADAh4AAAAyIOABAAAgAwIeAAAAMiDgAQAAIAMCHgAAADIg4AEAACADAh4AAAAyIOABAAAgAwIeAAAAMiDgAQAAIAMCHgAAADIg4AEAACADAh4AAAAyIOABAAAgAwIeAAAAMiDgAQAAIAMCHgAAADIg4AEAACADAh4AAAAyIOABAAAgAwIeAAAAMiDgAQAAIAMCHgAAADIg4AEAACADAh4AAAAyIOABAAAgAwIeAAAAMiDgAQAAIAMCHgAAADIg4AEAACADAh4AAAAyIOABAAAgAwIeAAAAMiDgAQAAIAMCHgAAADIg4AEAACADAh4AAAAyIOABAAAgAwIeAAAAMiDgAQAAIAMCHgAAADIg4AGAlbo4TimllPZPu5veFQDImoAHAACADAh4AAAAyICABwAAgAwIeAAAAMiAgAcAAIAMCHgAYIardeR7y8hfLyo/aWX5oW3p+GJD+wsA7STgAYC5XRyn3c7ELd3T/TSyrbPr0nEAsEQCHgCY08MvjdR756WDrYiI7un+9uHZhEecHW4fP1rDngFACQQ8ADCfs7OziNg7uayuHe1ERMTFa/16H9x63omI6HQ6G9lbAGgdAQ8AzG3v5PJBb9D9Rvf0lc7ErTtH1eXJ3vp2DgBaTsADAPPau39va/S27tsPe8PveyevjrZ9bB28KuEBYEkEPAAwr2efHuv3uHzvrH5jxNa9+woeAJZCwAMAc9p7Zvv2G7eefnZFuwMAhRHwAMACuu+/s+ldAIBCCHgAYAEG2AFgXQQ8ALAMZ+9dTrzdED0ALImABwAWsf3M1SJ1nUcXEzb3F6kHABYk4AGARdwsM9955bQ7uvXitUP9DgDLIeABgIVsHbzU6f10dridjm+G4bun+2m3s5F9AoA2EvAAwIJ2js471z93dtO17cOziL2Tk079IwGA+Ql4AGBhO0fVTcMP2Dt59eDpNe8LALSVgAcAlmHnqKouT/YGbumcVw8Otja2QwDQNqmqqk3vAwAAADCDEXgAAADIgIAHAACADAh4AAAAyICABwAAgAwIeAAAAMiAgAcAAIAMCHgAAADIgIAHAACADAh4AAAAyICABwAAgAwIeAAAAMiAgAcAAIAMCHgAAADIgIAHAACADAh4AAAAyICABwAAgAwIeAAAAMiAgAcAAIAMCHgAAADIgIAHAACADAh4AAAAyICABwAAgAwIeAAAAMiAgAcAAIAMCHgAAADIgIAHAACADAh4AAAAyICABwAAgAwIeAAAAMiAgAcAAIAMCHgAAADIgIAHAACADAh4AAAAyICABwAAgAwIeAAAAMiAgAcAAIAMCHgAAADIgIAHAACADAh4AAAAyICABwAAgAwIeAAAAMiAgAcAAIAMCHgAAADIgIAHAACADAh4AAAAyICABwAAgAwIeAAAAMiAgAcAAIAM/H+ihDB1golwsAAAAABJRU5ErkJggg==" title alt width="672" />
第三次模拟5000个随机数
n=2000
rd=rnorm(n)
plot(density(rd),main = "正态随机变量概率密度",lwd=2)
points(rd,rep(0.01,n),pch=20,col=rainbow(n))
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABUAAAAPACAIAAAB7BESOAAAACXBIWXMAAB2HAAAdhwGP5fFlAAAgAElEQVR4nOzdP3LiyPsH4NavvsfAVRNNNBfAVZvuAaZwYKd7gp0LWL7A7gkmtQNTe4BNt8pcYKKJpsrcQ79AIATmjyQEUkvPE+2OMQiQBZ9+3+5OsiwLAAAAQL/9X9cHAAAAAJwmwAMAAEAEBHgAAACIgAAPAAAAERDgAQAAIAICPAAAAERAgAcAAIAICPAAAAAQAQEeAAAAIiDAAwAAQAQEeAAAAIiAAA8AAAAREOABAAAgAgI8AAAARECABwAAgAgI8AAAABABAR4AAAAiIMADAABABAR4AAAAiIAADwAAABEQ4AEAACACAjwAAABEQIAHAACACAjwAAAAEAEBHgAAACIgwAMAAEAEBHgAAACIgAAPAAAAERDgAQAAIAICPAAAAERAgAcAAIAICPAAAAAQAQEeAAAAIiDAAwAAQAQEeAAAAIiAAA8AAAAREOABAAAgAgI8AAAARECABwAAgAgI8AAAABABAR4AAAAiIMADAABABAR4AAAAiIAADwAAABEQ4AEAACACAjwAAABEQIAHAACACAjwAAAAEAEBHgAAACIgwAMAAEAEBHgAAACIgAAPAAAAERDgAQAAIAICPAAAAERAgAcAAIAICPAAAAAQAQEeAAAAIiDAAwAAQAQEeAAAAIiAAA8AAAAREOABAAAgAgI8AFFYPCVJkjwtuj6O0M6h5PfRj+ezfLlLkiS5e1le8O7rP9PVYTV4iRZPF3w69XX0Xnf0F7N6tv15+QGGRYAH4JLyFHb+t/nlrx8hhJDeJp0H3/KhnPvEWrmTc03uX9/SEOYPNxd8ZdfvXHU3D/P1LzZ5hfKn0/VrG0II08f359n6FbjemTv9o3jUa/65rJ7tZc8mgPES4AG4mOXLXZ7C5g837X2XT9+y7HF61l3sLU6uSocnD/T957w4ktf7SbMjuPk8O/9O2jN9fEvz/0pv245dk09f8v+YPb9nNayPqPkrNHt+78FrG0KY3P/9vHq/09urjSlM7r+lV3/QUAwI5Q/ciyEUgAER4AEoW/Utt2NVQ82dlww3qXn2+ebM51g+opLbtPjnY6Fj8e/qdrPnP3aHEZYvd60ElmNN18U71G7Mzuu1ufSv488hxi7p5cvd7hFX6tFfD+uc+WQ3YTrM//nv2F0tX+4qvbeLp9MHNf29eNCf7xWOsjWls+nY022rPwdgRAR4AMom96/1C6SVi6pnFs5DCCF8+dRiTXVz7O/Pm5J4dqRuW+T39NvOjVb9BvOHm7YSyd6282JUpOXq5iZizp7/PlK3XjythzpafKZXkvd177ySx5v718M684eb817udZg++uque1ZOl8yXv35UiOVFo0f6+4k/vfW40PHHXd/q5ADD5Lev+SMffrrl/pzIziOADgnwAERgNe88VCvA51XTWqFg+d8/eS6epeGvdT5ZV1/3BbqPuW/Tb9DejIGPXedVBxoOHH7VrHr6VsVNK7/Ox+/3+AO1pxizKdq8PwxAFa/xzo8+vtx1GlY2wx6Hb7N9Dh15ZVfn66mVBcqjPdVueTxNr6dDnF7RoHR/J59rC8MjAKMhwAMQgU0H/ckCfFEhrlPY2+T3r3/8/mXd7j99PNR2cHo6dxvNBmf6ePgfbA0HfHyalaatV55m3nQO/NVtzrZTqjasHB4saPbKrs/Xevd32OY8CCHMH/48/XdzYGjp8AG9pScOtx/LFQD0nQAPQGeq1y831diTtb9y4bZyYW8d2dJv95PV/N309kMVffnyV1rc7LynftxmiTuu5YJ7zy2eKq6vUPkOvz+cGGI4tkzBx7n/6/tbp/LmWXr157nncW8+zzZ/vFanB2hKgAegM5Un3G8qwrNZqFnKrRJG1hPb85nCxWzwnQy/LnvuWb3uXEW3++WTTVsL7VV/wPX0h6u10BfjHz+/V17wLz/KfMTn1+rfKq6XuHg6+gCl+P5WnI/Ll7s940OVNr5fvtyt7/DwAa62FZg/3Oze4eKpmPu/Og1W41Inp2RUdmLbgNnzew/6UwAiJcAD0Hubhd+//v3386xaj2+D+y9W+ipt8vZvkX5WZcq9q3KdWJf9Y6vBZgJwepvszKy/aIhffM8X2qv6KO/tLRTetIX+x68TD7778hbzr9O0mAJ+c6Jmve7BmD3/ff+p3vOa/p4erjwX8T1920yrWL78+TDfLcevy+DHT4H8V3Ozr79tnYlbaz9sFoJPb4u726xAGMKqV351LG9nT/rYbBd4fNxjc9R7dgYA4AQBHoC+K+X33yZ5ebzVCL8qEZcK60UW2YSRIojtrSOXfrYvkHxoNSjNOf44L/iC5clNNTiPj6f3Fru5f31/nuVP+rystRs3Tymm8JfKuYunfSXqnZe3eHHLIwZbs7w/WrcJzL7+NilaBqpueDB9XI827FS818Xy2fN76V0tZfBinYZSWT2EY2MW5ee6W+fOx53WJ+j38HX7KZfT++qleb2f5Hd4/ZL4ehF6a9AD1CLAA9BvxcTz9czzvLQ4f7hpqVK96ozfypf5nl+z5/dVRtocxN5CcjkyVmpDrr5MWptK8T2kb1n2el+pRXxy/5o/wzwa1n3Z15Hz3P7s5ctdHkBP7bF2/MUt5mFvteivf6fpJoXTx9J6gH+tM3m+Jdx2a3q5hJ6/CZNNW/v5k9BDcTeP96ut3NK3x+lWem+jWX7PONbxXQxuSoMW2z0o1qAHqEGAB+CgK87MPnwM6/W6NgXyyf3fq2Xm2vjWv96Qa3tduuljKUaVM1crNrviXVG5+l67YXpy/7quMqe3h4vxdXeuq2Mn8R08J0+8uB+2kQthZxJFs9GVyf3r+h6/fHp/2hzvzrKLxT+/rere6+L7Os3Xsjw2w2E1dPJ4sx76CNvNAMXUgwZ/R3uGsY5v0bC3L2LDGvQA1QjwABxUTAVPbzuaq1paAKwcsNdhqY322027/MFjuHmYh9nzc3reA20Um9Zd0dZSas0apqePmxS2Z3W01U2u5dBzKL2483/+q3ZyFA30W7O3K65hV3r2q/0Lfp9uJqDn95Rn1q1N+/LjXzwlN/kU9CZvSoWRpeXLXTFmMHt+3wrKZ7ZWANABAR6A03a/+Vdy9r5cpXnB6dtuvFkts91C+23e/XygnJ93Hqdv2Wvdpc0O287vLe0sdtzepdQamNy/lqfvVzn0vCjfKBxWXJZ9W7l+XnHqfvGGfPk0Oas9YjOffHL/Ld3Uml/vJ5vl37cmxK9GPBq9J5v4fqDx/1B4Ly8eV2ocuPgCigCcT4AH4BLWU26b18iLecEhFNOKtxxcOqy2vCd/Z1Z9Hjz/+vy+m6/2TPE9tcT5tg8t2qt7vFSOLwZCWlhqfDfDzx++n3jd8zaOnT7yWk3ztYJlseJhWG86mL+8f/5z6Dd+/LXOwcUuBLkvnyZnTCOZPu6svrdezq6dZvFV6T6EsL9VYPG03a1fftSdE3A9FhbC/j+0vZouFgDAeQR4AM60N5ttbVZVu0a+3EzanT2/v6VFxt1JUZsMf3xq9kmrrd/LTyV//D0Hf2wRuyrKETOEkL6tf/vccYgDD7caCGklvedKVdsa9s59PjZvunhVaxz69ov79e/iOOfzQ2Msm5/kb3+Rixtu8LeeWb658Tq954vH5T9f/7S0BV71k3drzfo9+xrOH242HRcH6vvzn5stCHY6/o888JHuhE4WdgAYHQEegDN93AftoxpVx1Lf76rttzT3Or3dTfHlidmb6nj9GFxkmFWULPqKW1ixe8tOfg87Ne3Spt1tPFgeHbe3Mattz2Jn61XXS3vv9cGHEPkxmn5YhX41RPRhovqe8/rUa7h8uUuSm4d5vgp8fuNSes//Je/3WJ/Jedd9aSZ6lbN3a9+8A6dn/nT2HfHqDEz/3TzMagBr32DAfsfWBzixCj0A5xDgAeiPTd/v7Pm9HE12Mu52xJncv26vKb7TFVCtsjlZbbp1uin8LB/zewibhfVbtarTroYgSqXefalq6xUryrt5FtvaAWz9auYhsl+LhxdbFmyso2lhZxX69C0fIlo/lWI+fL0l7PJXN1/tcHuy+Z4BlOLdLqr6xXJyYfXP9VpJVn3+Wxl5f4wuv7tbD5NPxj/1dlZaoP/EKvQAnEOAB6AP8gC0Djv7ksRW33a5epibPma7KT6/Zf0K+o9fF1tTrthPfjU9e6MIdbPPN21sE5/vQl5KjltV202A3Z+2DgSvRosZXs96cGT7xc2neH94wVeRdbdEXbz0O0siHH7Qp012Ll6fnUT9IUyXl3dYt1yUduqruIB+MSazXuKgXkg+Zz7+gSnwO+NuZcX51+MTCCACAjwAXVpnkHXf8dHv95vVtg6UR/NM9l5uhq/eOV7sJ1eeHbzHGYvYrcu7s+dvXz8+fp5wtp5/86XCThfI81dz/vDnsWJvaSnBc9df21sSXleD9/2wbtP1Kr/Pnr9+2f7F6WOW/V16wY9snr7VIHFy2ntprYbt1+fQpPJSW/7esL05w48sLF9+gcrjL4/TD4M0R9V/N4sZCvv+/ib3r6fv8uMCAQDUIsAD0JHF03YGOfjlv7Sb2Hqf8aNBYR1jLlTqa76I3Tq/p9/uj7ZnX2s5sDxmHo7w5bXS0rdzX87mi9hVaolYNzek305u+Jc3c+xbXPHDAoPHB4A2Mzt2RzfWDRVFYs9vl09UWHXNr6edb60isIrwOwviF8/xz+3Mfvwc314ur03F8MLeiRlHFAvj27IOoBkBHoCOHAvjq1yQ56tV83wefi63Z/r+2eltPsD3VZ/1qXXfijbuevOw61vFzP3d4tvF97ZWsL+U1YubvlU70FVO3g7xxQSHGvb1TZR+8PFoNq/lgWnn08e9v1fcZ92BlNXqBm384axPzM15uVXzz4ceDq9pWZ7h0uKmCACjIsAD0BeLp92UkTdWPy0q7Pmezzqum1I+7hsXDlU/z7VKhxXW+d40Kn/97dLThYtK8e32S7deOz20t3X5RVvo89GXOmviF93qRQdCsX5d95Yvd5VO5sXTsZsVk0IONFBUfZTi9usT80B///SP59mHM6l0rKV2DukdoCEBHoB+WL78le5Zu6soWG6mB3+Mm2G9r9n84aZWJEnfPqx7d6GN0fIKcaVtuooCfPMZ8DWsI3ypDF9qnT8/vW/aCZq20KffTs+s/iutsQdayJNvaa3974vSEvaz5+f00O9dQ77+YAjzh5sqp/J67OPYbY+MSa1+vcojfSzA78jPpX0NHdunlPQO0JgAD0Av7NkBLISwFWLLEX7PQnPFMvWHivR7rTc0z7W+6/tKnYRZtPJX7wRYPJ0z17l44dLb5Gmxjo+hvdp73lZd+67W7dmnd1//82FefZL+r5e7JLlNw+z5vfTWb9rnK0yiD6FYaL7u5O8j27vt6TyYP9xUe1/PfKsqnZnrAvyxxpDNdJfyYW9mY7R2SgGMlQAPQA8U8WmV10vNv2Wbxb034XbxtKkfliJ+9b20y9N465QGS+t3nWj2zhNmxQJxsRda3U6Ac3a/K4Yx0ttimbGWxjKmj/Ve1g+WL3fH38r3n/PKc99DSB/yVoj31/vJ5LevsxDC7Pn3X38WCbPiy75ewqGiYqzg5L59uyo9sfOaNarN1VgV4E/deL0M3zrDl4rv56+ECDB6AjwAncsDbginV20rwvahVLNVpT++Q9q58mPZasHfn22W//1TuUBcjGSc7hsv/VILq9YX+9Dnj96XScqLp+TmYX58U/ZKQwRFJ38ol4Hz9/Dv8FcR3/cOspzX4TAQ6136Tof99YoV+QoTpRGhfpxTAFET4AHoWGm188aFxFJHfXkL7hM7uh87qKKP/a/dQYDtY9wsr3cwo0/uX6sWodcTCZpMxG/+ZPOEWm4jSG/PXra82gZjxxaxK/+8TkvFXjef12fF7tu0GT46PshyTofDAFTP7yHszkyR3gFaI8ADcEnrmcKHypel1c7DOeu/l9LVqi+68f0tntbBcTablaYhr3umPwSRgz+oa11+r7MaWwhFdblZwtw83RBC+rbp9S62AGhma4Oxg44tYvfBOf3Xq8nZH1ZQK4aPolxbbTMscWmr/F61MaQ8KhfCvnEwABoR4AG4mFI631nVqrhFae/1Zglq1T5eLj+vusGb3N9mcfLZ83v2+vqaR8z0NrnkDvS5dSW4bnwvXsTKK54VD3i3nd2z7HGaB+/ygv9HB2CuKh8Nqn4oOz0J08fdMYDiBD2+tlp+jn3cIWFEamzTVx4Rmj2/rcaDaix2D8Ax9RZSAWCgPuymdhnpW93jOVGa3TTq1lkcbLPU3eZ4tlp+t49zuxu4ladaSshvW49x8hU6+k5VfBG2J+4f+p39T7vyW1hJ9Qp86ZhP3Xjf21vrVjtHVe3+jmu+iN3puzzbyWNa7VJw4umXT6utu9x7pO29EABjIsAD0EeNwknlSHAgkR0N0dWPqMph7AT41f9WCogHD+T0436Yl1zF6bGdQ8MgF3T0uZ4O3CducfApN0/wVUekGt1tw/usOqiQ3+7wjbbe9Io3q/ueApAT4AHoqZpNAXWy1Zkl1aNJpFoMKQX4NL1wfNk+3KaPs/9J9zJ0HX17i+dx7L3f+2TP6j24UIA/y/pZnjikt3T/bar1cRy4v/ZeWYBxSbIsO/wlBAAGaPlyd/MwPz7v+cLy2dcXPYTy+oDtPtD6nvu6tPjiKblN9x3c6sC7eOc7fOjzLF/ubh5Ccdg7q06eewYsnpLb0NPTCKCXBHgAAACIgFXoAQAAIAICPAAAAERAgAcAAIAICPAAAAAQAQEeAAAAIiDAAwAAQAQEeAAAAIiAAA8AAAAREOABAAAgAgI8AAAARECABwAAgAgI8AAAABABAR4AAAAiIMADAABABAR4AAAAiIAADwAAABEQ4AEAACACAjwAAABEQIAHAACACAjwAAAAEAEBHgAAACIgwAMAAEAEBHgAAACIgAAPAAAAERDgAQAAIAICPAAAAERAgAcAAIAICPAAAAAQAQEeAAAAIiDAAwAAQAQEeAAAAIiAAA8AAAAREOABAAAgAgI8AAAARECABwAAgAgI8AAAABABAR4AAAAiIMADAABABAR4AAAAiIAADwAAABEQ4AEAACACAjwAAABEQIAHAACACAjwAAAAEAEBHgAAACIgwAMAAEAEBHgAAACIgAAPAAAAERDgAQAAIAICPAAAAERAgAcAAIAICPAAAAAQAQG+mcVTkiRJcvey7PpIAAAAGAUBHgAAACIgwAMAAEAEkizLuj6Gnlg8JbfpuXeSvmWP0xYOBgAAALaowAMAAEAEBPjC9PEt7foYAAAA4ICMLaUQP3t+P3WzYzfpVDcnEwAAwLV0nbo6oAK/Y/pYpPP5w02c+8QlSdL1IQAAAFzWCIPP/7o+gD6aPmbZHy93Nw/zMH+4Sf55fn+9n3R9ULVl6vAAAMBAjTC9B3PgD5rcv2bvz7MQIq7EAwAAMBwC/BE7IT55WnR9RAAAAIyVAH9CKcSH9FaIBwAAoBsCfAVCPAAAAF0T4CvaCfG3abeHAwAAwMgI8DWUQzwAAABckwBf0+T+tdgoHgAAAK4lsVv48OQ7InpnAQCAoRpn6lGBBwAAgAgI8AAAABABAR4AAAAiIMC3Yflyl+Ra3iI+aaTVQwAAAKAXBHgAAACIwP+6PgCOabamoiI8AADA8NhGboDGuaECAAAwHuNMPVroAQAAIAICPAAAAERAgAcAAIAICPDHLJ6ObtfW8p5xABA325oCwEVZxG6P5cvdzcO8xi+kb9nj9GKHU9s4l3MA4MoaRHSfTQC0ZZypR4DfVju7F3oU4sd5KgNwBS3W1X1OAXCOcaYeLfRly5c/y+k9fcuOe0tLN769e1le/YgB4Dpa74rXZg8AdQnwJYvvq/g+e37Psux0RX36mGVZ9v48CyGEMH/4blI8AINTK2kXg9y17lyYB4AqBPiNxb9pCCGE9O31flLj9yb3r6tSfPqvBA/AcJzM1R+b06r8qPHDAcDICfCF5a8fIYQwe/6j/lT26R95Ff7HL130AAzAkSxdK5M3+EUxHgAOEeAL7z/nIYTw5VOd6vva5NOXEEKY/3xv9ZgA4MpORvdWHkWMB4AG/tf1AQAAvXAkMF9ojd/y3e599HGuMAwAh6jAF24+n9EFv+6//3zT6jEBwBVcp+p+3JEHUo0HgJwAX1h3wTdZS369fn2z/nsA6E7n0b3ig8rwACDAb0x/T0MI9Xd0X77c3ea/qQAPQFz2puJOonuVA5DhARg5Ab5kvZZ8mD/cJEmSPJ0qxS+ekiRJbla7x4f0W63t5wCgO3v70juP7mV7D0Y7PQBjlvTnc7ofFk/Jqpxe0+z5vd728ZdjyR8AjjtUeL/+kVRxpMn/ykcCQH+MM/UI8HvUDvHpW/ZYf/P4ixnnqQxARXGl95wMD8COcaYeAf6YE0m+Z7m9MM5TGYCTYozuZbEfPwAtGmfqEeAHaJynMgDHDSb9DuaJAHCOcaYei9gBwPANKfRaoB6A0RLgAWDger7afAMyPADjJMADwJDtTe+dHEm7Dm0y18nBAMB1CPAAMFhDTe8FGR6AURHgAWCYBp/eczI8AOMhwAPAAI0kvedkeABGQoAHgKEZVXrPyfAAjIEADwCDMsL0npPhARg8AR4AhmO06T0nwwMwbAI8AAzEyNN7ToYHYMAEeAAYAum9IMMDMFQCPABET3rfIcMDMEgCPADETXrfS4YHYHgEeACImPR+hAwPwMAI8AAwHNL7DhkegCER4AEgVjtZVHrfy8sCwGAI8AAQJem9up0XRxEegEgJ8AAQHxG0LhkegAEQ4AEgMhaua4UMD0B0BHgAiJv0XpEF7QCInQAPADEx9f0cXi4AoibAA0A0pPfzmQwPQLwEeACIg6jZFhkegEgJ8AAQAQvXAQACPADER3o/kyI8ADES4AGg70x9vwQZHoDoCPAA0GvSOwCQE+ABgJFShAcgLgI8APSX8vulyfAARESAB4Cekt4BgDIBHgAYNUV4AGIhwANAHym/X5MMD0AUBHgA6B3pHQD4SIAHAFCEByACAjwA9Ivye1e81AD0nAAPAD0ivfeHIjwAfSPAAwCsGDEBoM8EeADoC+X3vlGEB6BXBHgA6AXpvSesZgdAbwnwAAAAEAEBHgC6p/zeK4rwAPSTAA8AHZPee8i7AEAPCfAAACcowgPQBwI8AHRJ+b23vBcA9I0ADwB9ITH2mSI8AJ0T4AGgMzJhzxlSAaBXBHgA6AVZsf8MuADQLQEeALohDUbBwAoA/SHAA0D3pMRYGHYBoEMCPAB0QA6MiOEVAHpCgAeAjsmHcTH4AkBXBHgAuDYJMDoGWQDoAwEeALokGcbIEAwAnRDgAeCqZL9IGWoBoHMCPAB0RiaMl4EYAK5PgAeA65H6ombABYBuCfAA0A1pMHaGYwC4MgEeAK5E3hsAwy4AdEiAB4AOyIHDYFAGgGsS4AHgGiS9wTD4AkBXBHgAuDYJcEgMzQBwNQI8AFycjDcwhmAA6IQADwBXJfsBAM0I8ABwWcrvg+ctBuA6BHgAuB7l98HwVgJwfQI8AFyQ2uxIeKMBuAIBHgCuRM12YLyhAFyZAA8Al6IqOyrebgAuTYAHgGtQrR0kbysA1yTAA8BFqMeOkDcdgIsS4AHg4tRpB8ybC8DVCPAAAAAQAQEeANqnlXq0vPUAXI4ADwCXpcV68LzFAFyHAA8ALVODHTknAAAXIsADwAWpzY6ENxqAKxDgAaBNqq8EpwEAlyHAA8ClqMqOircbgEsT4AGgNequFJwMALROgAeAi1CPHSFvOgAXJcADAABABAR4AGiHlml2OCUAaJcADwDt00o9Wt56AC5HgAeAFqi1spcTA4AWCfAA0DI12JFzAgBwIQI8AAAARECAB4BzaZPmCKcHAG0R4AGgTdqnCU4DAC5DgAcAuCxFeABaIcADwFlkM/ZShAegdQI8ALRGZgMALkeABwC4OJ0aAJxPgAeA5qQyjtCRAUC7BHgAaIe0xnGGewA4kwAPAA3JY5xkWAeAFgnwANACOY0qDPoAcA4BHgDgggzuANAWAR4AmlBKpRlnDgCNCfB1LV/ukrK7l2XXhwRAx5RYOc4ZAkArBPh9Fk/7A/riKUluHuZbt50/3CTJ0+LahwhAlxRRAYDrSwwJb1u+3O1G9BBmz++v92HfTzbSt+xxetljqyr/WumdBbiccoB3vaWKnUEfpw3AmcaZelTgtyye9mb0+cOfL4v//ln/JH3LNt7S1T/eaqYHAA4Y21dMAC5BgC9ZvvyV5v+1iejvz7MQQpg/3ObJfvb8vl1pnz6uQ/z84btOeoAR0D/P+ZxFADQgwG8sVzX2rWb4yf3rusYeQpg9/30/+fib0z/ymJ/+K8EDjIuyKtU5WwA4kwBfWOX32fMfO1PZ1/E8hNnX3/bE9xDC5LevsxBC+PFLFz0AAACXIMAX3n/OQwjhy6cPGX0dz/f9bH2TT19CCGH+8/1ShwdAL+h8pi3OJQDqEuCrWMVzACjTEU1dzhkAziHA7zrWBX/4Z8tfPy5zOADAYCnCA1CLAF+4+ZyvN//Pfx9T+vQxy7Ise923gl0Ioei/T3/vyVbwAFyCuMX5FOEBaEyAL6xnujfYDW7xdJuGEMLs803bRwVAT4lhAMCVCfAbk/tvaQghhPQ2SZ4qhvjFU5Ikt6vf+3awQg8AsIe2DgCqE+DLpo/Fnu/pbXIqxZezewghfXvUPw8wYIIWbdG+AUAzAvy26WNWZPhTHfGrSfMhhBDSt0x8BxgPAYwWGRsCoCIB/oPpY5blKf7wtu9l6VuWSe8AQA3GgABoIPH5MTz5QL53FqBFOzVS11jOVz6pnFEAdY0z9ajAA0A9Y/uuwBXoogegCgEeAE4QrrgEI0EA1CXAA0ANQhcXYpwIgJME+DYsX+6SXNXt4ytKGmn1EACASzEeBEAtAjwAHGNglKtxsgFw3P+6PgCOaTYw7+Mf4ELUS2ldlmU+uGTtUP0AACAASURBVAGoyDZyAzTODRUALsReX1yaTQoBGhhn6tFCDwAHKY1yBWP79glAYwI8AFQiZQEA3RLgAQB6RN8HAIcI8Mcsno5u19bynnEA9IscxdXo7wCgCgF+j2Jb99v06O3SW0keYCTkK67J4BEAewnw25Yvd0ly8zCv91vprRAPAJzDIBEAJwnwZcuXP8vZPX3LjntLSze+vXtZXv2IAbgQJVAAoG8E+JLF91V8nz2/Z1mWPU5P/ML0Mcuy7P15FkIIYf7wXRUeYIiURrk+Q0gAfCTAbyz+TUMIIaRvr/eTGr83uX9dleLTfyV4AKAhQ0UAHCfAF5a/foQQwuz5j1OF94+mf+RV+B+/dNEDDIDiJ33gPARghwBfeP85DyGEL5/qVN/XJp++hBDC/Od7q8cEQOcURbkm5xsARwjwAAA9pQgPQJkAX7j5fEYX/Lr//vNNq8cEwPWJTHRLER6AQwT4wroLvsla8uv165v13wPQV6IUnTOiBEBBgN+Y/p6GEOrv6L58ubvNf1MBHgA4n5EjAPYS4EvWa8mH+cNNkiTJ06lS/OIpSZLkZrV7fEi/1dp+DoD+Ue0EAHorMcS7bfGUrMrpNc2e3+ttH385+bdP7yxAA+UA70JKh3bGkpyNADvGmXpU4HdMH7PsLa35S+lblvUlvQMAAzC2r6QAVCHA7zF9zHInknz6trrd4/Q6BwbARemfp7ecnAAELfSDNM5mEoDz6Z+nb5yTAIeMM/WowAMAREARHgABHgBCkI7opbFVlgA4ToAHgF1SE/1kmAlg5AR4AID+MpwEQEGABwCFTaLhXAUYMwEeALYoeNI3zkkAcgI8AEBMFOEBRkuAB2DsxCH6TxEegCDAA0CZmEQUjDoBjJMADwAQAaNLAAjwAIyaSiaRcuoCjJAADwArKpz0nFMUYOQEeACAKCnCA4yNAA/AeMk/REcRHmDMBHgACEEuIk4GoQBGRYAHAIiJwSaA0RLgARgppUuGwZkMMB4CPAAoaRIZZyzAOAnwAABxU4QHGAkBHoAxEniInSI8wAgJ8ACMnSDEABiTAhgDAR4AIErGngDGRoAHYHTUKhkkJzbA4AnwAIyaGiZR2zmBZXiAYRPgAQAAIAICPADjokTJwCjCA4yHAA/AeOmfZxhkeICREOABGBHBBgCIlwAPwEgpvzMkivAAYyDAAwAMgTEpgMET4AEYCzVJRsUJDzA8AjwAY6RWySA5sQGGTYAHABgmRXiAgRHgARgFSYaRsJodwIAJ8ACMjjZjACBGAjwAwKAowgMMlQAPwPAJMIyNDA8wSAI8AOOifx4AiJQADwAwQIrwAMMjwAMwcHILoyXDAwyMAA/AiOifZ+RkeICoCfAAAIP1cdBKhgeIlwAPwJDJKqDxBGAwBHgAxkKMYbRMhgcYBgEeAGD4ZHiAARDgARgsEQUAGBIBHoBR0D8PivAAsRPgAQDGQoYHiJoAD8AwSSZQhb8UgIgI8AAMn/55KNgZHiBeAjwAAySQwBGGtAAiJcADMHCyCnxkMjxAjAR4AIAxkuEBoiPAAzA0cgg0428HoOcEeACGTP88HGFBO4C4CPAAAONlkAsgIgI8AIOifgh1mQwPEAsBHoDBUlqEimR4gCgI8AAA7JLhAXpIgAdgOEQOaMyCdgD9J8ADMEz656EufzUAPSfAAzAQqoVwPpPhAfpMgAdggBQSoTEZHqC3BHgAAI6R4QF6QoAHYAgEDGiRBe0A+kmAB2Bo9M/D+fwdAfSQAA8AwB4mwwP0jQAPQPTkCrgQGR6gVwR4AAZF3y9clAwP0CEBHgCAgyxoB9AfAjwAcZMl4NI0tgD0hAAPwHCIGXAhJsMD9EGzAL94untZtnwkAFCbFAFXI8MDdK5pBX7+cJMkSZIkT4tWjwcAGlJ+hyuT4QGu7OwW+vQ2D/JK8gAAw2ZBO4BuNQvw08cse3+elf9JSR6AK5Mc4Pq0ugB0KDn/Krx4Sm7Tj/+cvmWP0zPvmkbyb7Q+X4HBKwd4Fz24pp3hM3+AwPWNM/W0sAr99DHLsuxDSV5vPQDAMFnQDqATLVTgP1CS79g4x6KAsVEAhG75GwS6Nc7Uc4l94Ncl+Z2a/KokryIPQMvG9uENfaAID3B9l6jAh+XL3c3D/NgtVOMvaZxjUcDYmAAPfaAOD3RlnKmnzQr88uUun/a+nd7Tt48F+fRWIR6AxtT6AIARaiHAH8jtRXAvSu2T+9csy97SEEII84fv9psD4HxjG3qHXtFID3BNzQP8odw+e37fCe7bpr+njR8TACQE6BcZHuBq/tfot/atMz97fn+9n5z+3eWvH/ntP980emwAKCi/AwDj0SzAl1UN7muT+9fs/uxHBQCgJ7IsKxfek+QiyyQD0DzAW0gegOvTnQv9JMMDXIFr6wCNc0MFYCTsHge9ZUs54JrGmXqaLWK3eEqSJKm0E1x+02q3BYBjlN+hz6xmB3Bpbe4Df8z85/uVHgmAURjbiDtEQYYHuKhLB/jFv+mFHwEAAABGoNIc+OXL3c5m77XVXaueM4xzNggweKbXQiz8tQJXMM7UU6kCP7n/lp73MLOvv0nvALRlbJ/WEBeN9AAXUrGFfvr4ljZ+DNV3AM4kAAAANNtGbvGU3KaCeV+Ns5kEGDa7x0F0NNIDFzXO1HOtVegBABgTjfQArWtWgafXxjkWBQyYOh5Eyh8vcDnjTD0q8ADEZGyf0xA1RXiAdlUJ8IunZOVpsfsvla1/FQDq8I0fombQDaBFKvAAREMSgNgZkgM4hwC/z/Llrtw9cPeyrPoLGg0AALYYegNoi0XsduVb5O2RvmWP0wO/tHy5u3mYn7jR1YxzOQdgkKyABcPgbxlo3ThTjwr8loPpPYSQ3lYoxQNwKWP7hIYhsZodQCsE+JLly1/p6j/Tt6zw/jxb/ev84UaGB7gWX/EBAMouEODLE8ijiruL7w/zEEKYPb9v9cFP7l83KV6GB+iC8jvEThEe4HxnBvjF005KLyaD5+YPN9GE+OWvHyGEENJv95OPP53cv2ZvaQhBhgcAaMJIHMCZzgjwi6cknzA+//m++qfly5+l9L4yf7iJYm3295/zEEJIfz+4CN30UYYHuBLVORg8f+YAdTUN8MuXu81qbz9+5Vl2+d8/q/i+mkK+7jtP/xpK2t3K8FGMSwDET9UOBsOfM8A5Ggb47aj+mvecF/84e/4jr2JP7l/zuLsp0sdv+liMS9wqwwNcgrocjIQ/doBamgX4dVSfPb9vVnvb5Pevv20mkU9/T0MIIf2399Xqm8+zECod6eT+dZXhleEBLk29DgbGanYAjTUL8Ovp4lvLva3+MYQvn/YsAtd/k9++5gn+tkImn9z/rQwPAADA9bS3jdzi3zT/jyOrwPXbOsGH9LbC0vnF9IAwf7i5+bh2HwDNKMfB4CnCAzTTWoA/lN9Xm7PNPt+09UiXsymrh/nDTZIkyfFa/GZFOwAuQv88DJW/boAGmgX41XTx9erzYbOJ+m5SX3zPa9ORtNVvZreHEKoMO0wfs/IvAHAehTgYJ3/7AFU0C/CTT19CCGH+8Gfeab7Z/728gN3y5S5Z7TUXUVv95P41qxXKa/8CAJUo0MGw+RsHqCtpeOlcvtztm/edvmX5svSLp2SzT/zs+f31PooK/DDkY9g+FIEYlatwrmMweDuFd3/1QHXjTD1N58CXpotvFPu/F032IYSQvknvAFSghxbGZmzfvAHO1HwRu8n969YSbulbVgrqeZN9+pZl2WM03fMA9Iav9TBCRvEAjmvaQk+PjbOZBIidTloYLXNngAbGmXra2wd+zJYvd0nu+L5ztSWNtHoIAB0Y24cxUPBNBuAIAR4AgC4ZswOo6LwAv6k8n9RyaXokska6PmqA2tTcgIILAsAh/2v8mwc2khulyf1rdt/1QQAMhIFIGKEsy+R2gJOaVuAXT9I7AK3wrR3Y4bIAsFfDCvzi33T9n+mbjeIAaInyO4zWThE+SWyWBLCrWQV++etH/h/SOwBnUWcDAKioWYB//zkPIYTZ8x/DTu+LJwvzAVyPahuM3M5FwAAfwA7byO1RLK5/mx69XXoryQOcw7dzYIeBPIAjmgX4m8+zlo+jL5Yvd0lSe32+9FaIBziTb+3AR4b5AMqaBfjJb19nIYT5P/8t2z2cji1f/ixn9/TtxIbrb2npxrd3L8N6NQAAOmA4D+CQhi30k/tvaQhh/vDnkELr4vsqvs+e37MsO70+3/Qxy7Ls/TnvR5g/fFeFB6hMYQ2owrUCoNB4Dvz08f15FsL84SYZSuV5vTde+vZ6P6nxe5P711UpPv1XggdoQsENKHNNANirWYBfPCWlmeLzh5uji7VHss7bam+8RkvrT//Iq/A/fg1jLAPg0pTUAADqsgp9YbU33pdPdarva5NPX0IIYf7zvdVjAhgDpTbgOEN+ADkBHoBr810cOMnQHsBHzQJ8vnhbLScXhOvcam+8Zl3w6/77zzetHhPA4PmODlRh4A8gqMCXrLvgm6wlv16/vln/PcCY+BYOVGSAD2CHAL8x/T0NIdTf0X35cneb/6YCPEAtvp0D1Rn+A2glwC+eNqvNr7Lv8uUuvu3l1mvJr9fVP7lyfv7Ei+X402+1tp8DAOAow3wAZWcG+DzBrurPu+YPNzFsH1ey2dE9hBBCentib7zyE589v/d/nj9AxxTQgHO4hgAjd06AXzwdiu7FnmwhpLdxZfjpY5aVQ3wl6VuWvaq+A9SisAZU4VoBUGgc4DcTv8Ps+T3LsvdV+3lu+riJweltVBG+tMj+iSSfvkWzxD5ADyidAedzJQHGrGmAXy+7Pnt+P1R7nj4WoT79K7bp8LkT2+XJ7QBNKakB1bliAOQaBvjFv2kIIcye/z7aOD65/zuP8PN//osywQPQEkUzoC2uJ8BoNQvwy18/Qghh9vW3U/O+J799zRP8z/dGjwTA8CimAXW5bgCEpgF+tUTdl0+n122bfPrS6CEAGA7lMqBdrirAOLWyDzwAVKWMBjTj6gHQLMDffJ6FEMKPX6cntq9ny3++afRIAMROoQy4BNcWYISaBfhVX/z84fup/eFW+b1Stz0AQ6eABpzDNQQYuYYt9NPf0xDCqS3eN3vFp7/bcQ1gjJTIgMtxhQHGpukc+OnjWxpCCCG9TZI9IX75cpckN/le8WH2/If8DjB6SmfA+VxJgDFLzrgILp6SVYH9qPQte5TfrykfjfbxBvRBuT7mugS0Yqfw7toC4zTO1HPOKvTTx+z9eXb8NtI7wHjpbgUuYWzf1wEKZ24jN7l/zbL9MT59y7JMegcghOALNwDA2c5poaenxtlMAvSNHlfgclxhgHGmnjMr8ABw2tg+XIFLc1UBxqlxgF++3CX7HdtYDoBRMPsduCbXHGAkagf4dXBfbxH3UXoryANQUCgDLsG1BRihWgF++XJ3JLjvSm+T5O5l2eCgAIiZUhhwfa48wBhUD/DLl7ut8J6vMv/R1pL084cbGR5gxJTIgMtxhQHGpuoq9Iun5DZd/Xelvd1r/wKtGed6jEBPWBoauCbXHBitcaaeahX45ctfaf5fs+f3amF8+ripxad/qcIDjNDYPlOB63OdAUalUoBf/vdP3js/e/77flL5vif3f68i/Pyf/yR4gOEzBxXolqsQMGxVAnyR39NvNeJ7CCFM7r+lIYQQ5j/fax4YAHFTFgOuw9UGGI86q9DPPt/Uvv+bz3kN/scvJXiAYVP4AvrAtQgYsCoB/v1nXoD/8qle/T2EECafvoQQlOABxkVBDLgm1xxgJGrtAw8A+yl5AQBcmgAPQMuUwoBuGVIEhkqAB+BcvisDnTN0CIyBAA/AWXbSu+/QQB8YWAQGSYAHAGAIDCACgyfAA9Cc8jvQW4rwwPD8r8Zt09skvdRxABA76R3oXJZlcjswYCrwADTkWzLQcy5TwMAI8AC0QPkd6AmXI2DAEte44ckHm72zwEWZ/Q70VvkC5eoEQzXO1KMCD8C5xvbZCUREFz0wJAI8ALX5Qgz0mVFFYKgEeADO4osy0HPGHIHBEOABqMdXYaD/jC0CgyTAA1CDteuAGBl5BIZBgAcAYICMMALDI8ADUJXyOxAvRXhgAAR4AJqQ3oH+c6UCBkaAB6ASxSsAgG4J8ADUpqgFxMhAJBA7AR6A03zrBSJlwBEYEgEegBOsXQcMhuFIIGoCPAAAQ2bYERgMAR6AY5TfgYFRhAfiJcADUJX0DkTK5QsYBgEegIPUqYBBcnEDIiXAA1CJ+hUQNRcxYAAEeAD2U6ECAOgVAR6APaxdBwybMUogRgI8AACjYCwSiJ0AD8Au5XdgDBThgegI8AAcI70DQ+KaBkRNgAdgi5IUMB6ueEBcBHgADlKqAobHlQ2IlwAPwIZiFDA2rntARAR4AFasXQeMhOsbECkBHgCAUVOEB2IhwAMQgvI7MDKuckCMBHgApHdg7BThgSgI8AAAjJHBSiA6AjzA2Cm/AwBEQYAHYEN6B0ZLFz3QfwI8wKj5wgqMmVFLIC4CPAArvsgCI2dME+g5AR5gvHxVBTB2CUREgAcYKWvXAXxkZBPoMwEeAIBRM4IJxEKABxgj5XeAQxThgd4S4AFGR3oH2OFKCERBgAcAgC2K8EA/CfAA46L8DrCX6yHQfwI8wIhI7wAVKcIDPSTAAwBACIY1gd4T4AHGQvkdACBqAjzAKEjvAHXpogf6RoAHAIAV45tAnwnwAMOn/A7QjCI80CsCPMDASe8AtbhOAr0lwAMMmdoRwJlcSIH+EOABRkRZCaAKV0ugnwR4gMHSPA/QCkV4oCcEeIBhkt4BzuGyCfSQAA8AACcowgN9IMADDJDyO8D5XDyBvhHgAYZGege4BEV4oHMCPAAA7GcMFOgVAR5gUJTfAS5HER7olgAPMBzSO0DrXEuB/hDgAQCgKkV4oEMCPMBAKL8DXIgrKtATAjzAEEjvAACDJ8ADAEANuuiBrgjwANFTfge4NJdWoA8EeIC4Se8A16cID3RCgAcAgNOMkAKdE+ABIqb8DtAVRXjg+gR4gFhJ7wBX5koLdEuABwCAJhThgSsT4AGipPwO0AnXW6BDAjxAfKR3gJ5QhAeuSYAHAIAaDJsCXRHgC4un5HxPi66fBjB4yu8AvaIID1yNAA8QE+kdoA9cfoFOCPCF6eP786zrgwAAIDqK8MB1JIYPty2ekts0hBDC7Pn99X7S7dE0k3+EeGdheJTfAXqlfFl2TYYrG2fqUYHfMX3M3tIQQgjzhz9flt0eDMCG9A7QZ4rwwBUI8B8VvfQiPNAXvhcC9JCxVODKBPh9Jvd/ryP8d8vKA137mN59ZQToIYOtwKUJ8PtN7r+lIYQQ0r8U4YF+kd4B+sM1GbgmAf6Q6R+K8EAPmPoOEBFFeOCirEI/QONcjxEGSXoHiILLNVzfOFOPCjwAAABEQIAH6Cn1HIBY7FyiNdIDFyLAA/SR9A4QFxdq4AoEeIDeUboBiJ0rOXAJAjxAv9j1HSBSLtfApQnwbVi+3CW5p3a3nEsaafUQgI75OggQKd/KgNYJ8AA9Yuo7QNRct4GL+l/XB8AxzT4DDPdCpKR3gIFJksTFHGiRa8oA5RnAOwtxMfUdYDDKl3QXc7iQcaYeLfQA3ZPeAYZKayTQIgEeoGPSO8DAuIwDFyLAA3RJegcYPEV4oC0C/DGLp6PbtbW8ZxyA9A4wEK7nwCUI8HsU27rfpkdvl95K8sA5LDsPMBKK8EArBPhty5e7JLl5mNf7rfRWiAfqkt4Bhm3nwi7DA+cT4MuWL3+Ws3v6lh33lpZufHv3srz6EQOR8jUOAIC6BPiSxfdVfJ89v2dZlj1OT/zC9DHLsuz9eRZCCGH+8F0VHqjAwnUAI6EID7RLgN9Y/JuGEEJI317vJzV+b3L/uirFp/9K8MAJ0jvAqLjIAy0S4AvLXz9CCGH2/MepwvtH0z/yKvyPX7rogSOkd4CRU4QHziHAF95/zkMI4cunOtX3tcmnLyGEMP/53uoxAUMivQOMk6s90BYBHuAapHcAcorwQGMCfOHm8xld8Ov++883rR4TMAzSO8DIWc0OaIUAX1h3wTdZS369fn2z/ntg0KR3AABaIcBvTH9PQwj1d3Rfvtzd5r+pAA/skN4ByCnCA+cT4EvWa8mH+cNNkiTJ06lS/OIpSZLkZrV7fEi/1dp+Dhi0JEmkdwDKZHjgTIlvk9sWT8mqnF7T7Pm93vbxl5N/GHhnoUN7v5P5qwRg5wPCRwM0Ns7UI8DvUTvEp2/ZY/3N4y9mnKcy9If0DsARMjy0YpypRwv9HtPHLPeWHr1d+ra6XZ/SO9CtvW3zY/toAeAIHwpAYyrwAzTOsSjoA5PeAahCER7ON87UowIP0A7pHYCKfEAAzQjwAC2Q3gFozHL0QEUCPMBZbBcHQAO2lAMaEOABmrPgPAAAVyPAAzQkvQNwDkV4oC4BHqC2Q23z0jsAtcjwQC0CPEA9Cu8AAHRCgAeoQXoHoF2K8EB1AjxAVdrmAbgEGR6oSIAHqMRecQAAdEuABzjBTu8AXJoiPFCFAA9wjEnvAFyHDA+cJMADHCS9A9AhGR7YIcAD7GGndwCu7+OnjAwPlAnwALsU3gHoio8b4AgBHmCL9A5At0yGBw4R4AE2tM0D0AcyPLCXAA+wYq84AAD6TIAHsNM7AL2jCA98JMADY2fSOwD9JMMDOwR4YNSkdwAiIsPDyAnwwHhZsg6AnrMzPFAmwAMjZdI7AFHw8QQUBHhgjKR3ACJiMjyQE+CB0ZHeAYiODA8EAR4YG+kdgGGQ4WGEBHhgRKR3AOJlQTtAgAfGQnoHIHYyPIycAA+MgvQOwDDI8DBmAjwwfNI7AEMiw8NoCfDAwEnvAAyPDA/jJMADQya9AzBUPtFghAR4YLCkdwCGzebwMDYCPDBM0jsAYyDDw6gI8MAASe8AjJYMDwMmwANDI70DMCp7F7QT42GQBHhgUKR3AEZo74edGA/DI8ADwyG9AzBahz7yZHgYEgEeGAjpHYCRy7LsUCn++gcDXIIADwyB9A4Aub0xXoaHYRDggehJ7wCwQ4aHQRLggbhJ7wCwlwwPwyPAA4MivQNAQYaHgRHggYjtfAuR3gFghwwPQyLAA7GS3gGgir0ZXoyHGAnwQJR87QCA6mwvB8MgwAPxsXAdANQlw8MACPBAZKR3AGjGFvEQOwEeiIn0DgBnkuEhXgI8EA3pHQBaIcNDpAR4IA7SOwC0SIaHGAnwQASkdwBone3lIDoCPNB30jsAXIil6SEuAjwQGekdAFokw0NEBHig13a+QEjvANA628tBLAR4oL+kdwC4Ghke+k+AB3rKlwYAuDIZHnpOgAf6yMJ1ANAJGR76TIAHekd6B4AO2V4OekuAB/pFegeAzlmaHvpJgAd6RHoHgJ6Q4aGHBHigL6R3AOgV28tB3wjwQC9I7wDQTzI89IcAD3RPegeAPpPhoScEeKBj0jsA9J8MD30gwANdkt4BIBYyPHROgAc6I70DQFxkeOiWAA90Q3oHgBjtzfBiPFyHAA90QHoHgHjZIh66IsADV7V3kF56B4C4yPDQCQEeuJ69n+vSOwDEKMsyU+LhygR44EqkdwAYHhkerkmAB65hb9u89A4AAyDDw9UI8MDFmfQOAMMmw8N1CPDABVmyDgBGwvZycAUCPHApJr0DwKhYmh4uTYAHLkJ6B4ARkuHhov7X9QEAQyO6A8CY5R/6O98HkiTxZQDOpwIPtEl6BwCCZe3gMgR4oDXSOwBQsKwdtE6AB1pwaLV56R0AxsyUeGiXAA+cS+EdADhEhocWCfDAWaR3AOC4vU15Mjw0IMADDWmbBwCqk+HhfAI8UNuhFWhEdwDgCMvawZkEeKCGI5+y0jsAcJIp8XAOAR6o5Hh0l94BgIpkeGjsf10fANB3Rz5Q5XYAoIH8K8TOd4z8f327gCMEeOAg0R0AuJwsyz5+2RDj4Qgt9MAeGuYBgCs49KVCRz3spQIPbFF1BwCuaW87ff4vvnvADgEeWBHdAYCumBUPVQjwgOgOAPSCWfFwnAAPI3VyapmPSQDg+vZm+CDGQwhBgIcREt0BgD47NCs+iPGMngAPIyK6AwCxOB7jfWlhnAR4GLiKu7D4FAQAesga9VAmwMNgqbcDAMNwZI368g1g8P6v6wPotcVTcszTousDhF3lM/TIzbIs8zkHAMTlyLeXk19+YBgE+D2WL3f5JeA2PXq7/2/v/oOkyev6gH/aU680SmkstMTdeMH4iPEMUFZJ7eIFOeXEnKnAsUv5bCWV6IPgoZ4eagWkzM7GJCCFdwmHnAd5EMqwqzzLgT/CmbtwllDsgmXKQK6iecoyl9pVcykTUQELBDt/9ExP90z3zOyP+fGdfb3+eWb6x2w/093T/e5P9/fbWZfkWRwTHrdEdwAgXaNPY8R4lp5HR+qO9zZXt/ZPM2fnIN9eO+/FOR2Nc87B8+qHikfav/zsn9Te5f+3+jaP97bP+DO1t/mPfmf9b/56DB6u8n8VsVEf9HV5ROxHtvlAbQmvv6w/79feFxGR/W53gvz+X69/6POHFuw/1N7l1/Ls79Rn+Zks/rx8d1/2pPL1D8Yf1ad8SvXdW+r/oZfmV/NXvSRe+0h14LX49uLFZ+sL9TsRn46IiHvjl+tjnlp/+wvVN0/E617YG/o1Ua6aK9VpstvfExHxoogPRf7mH6uN+vnX59/zstqQdzyQf2uWvT+PiLgv4r9E/qnXVsYP/Nis1t/e0HuxFRERv1If+5X9v/Lh1+TPurk+9slZfvsnsu7ifWG8uz72X9Tf3h8Rj8a33Bo/WR/+tqivoE/FZyPixvqzV3fFZ94Qr6gO+bm4568iIuKH4t6IV9Y/86sjvqHy9rs+GFeeHR+PeGvE/46IiDfUp78juiviz3pDPlyf4HnVN38e7311xH2VLyfi4/Xp74p4X33ICyI69SHP7r34w/rwbDKCogAAIABJREFUeyL+IiIifjoiIp6oj313b02Vvqzy+h/Up6z6UMSPRkTEb9eHFxvAJ3tvj+pjvzzi8yLiT+KjT0R8Q/xaRAxsqxHfHvHMiIj4pfrwp0Z8LOKv6wNvr7zejYihverfRkTEXRH/sz78GRFPqrz9rt6L2yJ+qzL8Vb0XtR+9iIcivrz3+pn1UV/Ue/EdERHxwfrYGyP+oD7kRREx9P/6bxHX60OeE/HNERFxZ8RPRPxqfeytvRdPj4iI6g/Of69POfD97EW8vfL2kd7/dOBwUP4fB7auchf+gsrAzy9f/dN4V3Xqp0Z8aURE3BXfXf+c36y//cbei+PeMtdW31Pi038Ur67Pcn/97UHE1YiIwcPTS94Xd0fEt9UWOF4Vf1m+fk3cVJ/lOb0Xtd+Q7Huv5m99dsT/qk/8pIhPVN5+rD72myLinfHoiwd/0v+0/vaVET9VH/LiiF+sD7l9aK47In4zuoet8gfkM/VpHu296ES8tT7q66tv3hTvf3n9K81uuLN8fedni2k+vzrBbd3DVzySR55Vf0I/Wp3s1vyhL87yX47vrw78vfi54sXTiu0ueyDiMxH/r7YAd//km+6tLfHLX1P/H7yy2Nh+NSK+Kt6+ntW24Xf+cZa9q75V/8BL83hzREQ2sDd9zv2VH5YvybOIuFzfI55eP3X5SH1s9n31z3t97d17vqT2tjjg/X7+rMr8v3XSk+Gs+0PXlcePVMb9u9qk+Q8X/36kfq7ydGffs3UxU48AXzUQ38dm8sOdapF+Y/fo2uWVqS3c5C7mpjxPz2u50Dsc4+vpvT94bIwfSO8939k97+8rY3xDeo+IiP2vi4H0Xipj/KWXt6T3/iL2Ynw9vUdExO80zpHl2zE6vfc//CkxlN4L3xf/uXGOthj/3YPpvVSc8/1C47gn4nVf0ZLeS9nt78n/448NDf6L5onf8UD87Nj0XmqL8V80OGFEL8b/atOoiHjyJ+M3xqX30gvqb98WbSto6FJRRETcNTRkdSi9lwZi/HNb0nvpGb0XH26ZoBrjq1vgxwcn7Kr+9f/aMs1NLcO/MCKG0nvpC4aGDMT4dw9NULixaeCnei+OmsZGGeMj/k3bthrxt1qGf0nTwNtb0nvhr4fSe6ktxhd/pS29lx7qpfRhXzT0ovCHgxN2vbDyeji9l54T8ZXt+04R4/9PZcjo9F4qfhvb0nvpy1uGTxTjJ07vpWLywfRe8eO9F/e3TPCVLcP/oHHoq+Ivh9J7aTjG/95Qei8VP4Afaxn7ZfW3fzo0wV8NDfnroSGF9aEhn9ee3kt/fyi9l76+/vbywOjshjsb03vptvj0w9Ga3isadvAixj8tGtJ76f7BK7bNMX4ze1Hj7NfeODgk/8G2vak1xj+9+WjSjfGD6b30+oih9F46S4wfSO+lPH5kML33F/WHG4eL8TNzMVOPW+grDq920/vG7lGe5+Mr6mvbeZ7nR7tFTNrfuupWehaAm+QBAAoTNg8EqVCB7+vV009xM/wZZp2Ci3ktam7ayu+FahG+pfzeHTmiCN9Sfi8MF+EfyiP+dXbS8nvh+suy8eX37ujnT15+L7wx+v+R1vJ7RES8JZ4yPLCt/F4YLsK3l98LHxw59p9HRHtJs1B/UqCl/F7IbnxgsvJ74URF+N9uGlh6cr023lZ+L5RF+Le1l98LkxThf3bkJwwU4b++vfxeeEZ7+b1QFOEnKb8Xir/eVn4v3NQyfNS6HlmE/9TQqKqBIvzY8nuhKMK33RFQmLwIXzyqcNLye6GtCP/TvRdt5fdor4sWhovwbeX3QlGEH1F+L/yNkWOrj6VMWH4v3DCu/F44ZRF+J951wvJ74UnjVt+Pt5ffC8NF+Obye89XtI+qFuFHlN8Lo3e3cuc6S/m9MFCEL3fAtvJ7RPz+yA8cU4R/edzZVn7vKZ9Oaiu/Fxp38GeOKL8XxhbhN18VI1SL8O3l90JDEf617VNHxEe/b9Tu855/P2rexiL8wDTDJ8lt5feIyEfGfkX4+bqYqUcFvnT8+GMRERu7V04ewdeuFFX4xx4/Puel4uJytRgA4NypyZM0Ab50dH0/IuLmm07zGPvKTTdHROxfH10ogQk5ogAATJsYT3I+d/wkAAAACSrvrxbUWQ4q8KXVS2e4C753//2l1XFTsmxG9Bg3MCpvbvM8hh6Aj+yh2rsYbu28q/kB+Ih4dd74kPXG/4hrL2s9ehWt0F9/U3eC7M6hHuNKRSv0+T8eGvHMoSFdWb79Q3m/M7k3Nj3l3vvwpzQ++/aW3lPuwxpbof/F+EetfyKeGtHaJMET8brey6tt03Q7k6v54taJ3/FAfFNkN1bbE25qoqDrpK3Q/8P2j3ryJ+M36kP+ZfvE1Vbo/1mMWEGTtkI/4gnH4VboGz+hVLRC/6z2CcpW6KtbYOM3Vij/+jPap7mpZfgXjny4d3Qr9C8cGlsaboW+HDLiwFK2Qt+6rZ6wFfqiJ7wbmkZ9TsTfbv8rI1qhLx+rHWgzvOo/tY9qbIX+q9qnL7/kb4y41D7Zc0buO7fWn1H/u/Wxjd9P4fkRz+v9T0dEhdO3Qv8Hvae93zDYHdpzotWXRtwwcvUVrdDf2T5BYyv0T20aGFHvTG7IQCv0T4v46vaJb2jZUAvVLepLh8Z+3tCQESe9w63Ql9vbiFrX97aPGt8KfUS8vNdj3LDbaqP+Xvsfam6F/vfiZRGfG/E322abpBX6a/m7osVAK/TZG0fsTc2t0H+kvZGIj0Sev6X9814fL2jrl6DpAfi80n7KqFZ+s7tbPzRvfso9PADPnAjwpd5d8KdpS77Xfv3p7r+HFnnPvBcEAGAZ5BWTTK9uz6LRCn1F2a37yXp07/cevyA9wV/M9hjnbKAt+kdab9bKo1a1Hq69t18brrdFn//od9Y/+6Hh+Ybbov+6PCL2Ixtoi/56pSz/tfdFRGS/29IWfT5Ulq+3RZ/l1/Ks3jx7/jNZ9Gvvo7qCz2tV34Gu4F+aX81f9ZJ47SPVgW09wP9OdIsX9w62RT9QMqrdFvFEvO6FvaFf09IVfLf2/qKID0X+5trNEdnPvz7/npfVhrzjgfxbs+z9eUTEfWO7gm+rvRdF0V+pj+0XxLIPvyZ/1s31sU/O8ts/kXUXb1xX8PdHxKPxLbcOFmTeNtAW/afisxFxY70edVd85g39ppIjIn4u7ilaf/6huHeoK/iB2vt3fTCuPDs+HvHWlq7g7+g16P1nvSEDbdFXe4CPP4/3vjrivlq1cKAt+rsi3lcf8oKITn3Is3svBpo6v6fXIHbRrPpAw+/v7q2p0kAP8NUpqz4U3VtpBjoUKDaAT/beDjSx0q29/0l89ImIb4hfi4ihfhO+vXdLwi/Vhz814mNDLXLfXnnd2BV80UTzXUONmbfV3m+LqLb83NYV/EOVcvTALTxlCbToIn6g54gbh1pBLzqsHvh/DbdF/5yIb46IiDsjfmKoK/hbey+eHhER1R+c0W3R70W8vfK2rSv48v84sHVN1AN8aeKu4L+x9+K4t8y11feU+PQfxavrswy0RX/Qu7/jvfXhL3lf3B0R31a/66Raex/qCn64B/iIiOx7r+ZvffZQW/RPivhE5e1AyfWbIuKd8eiLB3/SB9qif2XET9WHvDgG71y4fWiuOyJ+M7qHrbau4B/tvegMdQVfq72/Kd7/8vpXWtTeC41dwZe190fyyLPWruBvzR/64iz/5fj+6sCiB/iIeFqx3WUNXcFnd//km+6tLXFjD/DFrvFV8fb1rLYNv/OPs+xd9a36B16ax5sjIrKBvam1B/jSQFfwA2X5wa7gX197N9AV/Oja+ySyLIu8/tVUyvJ5vZn6LH4kIvI8/0j9XEXtfcYuZuoR4Kv6UTwiJugUrkz8E04/IxdzU14cp7hSa2UBAMzdqevtzuXm4mKmHgF+wEAmn9yCVN8jLuqmPF9+7gEAlskZb553jjcDFzP1CPANThziF6X03nUxN+VZ8oMOAHBxOPdbTBcz9Qjwo4xJ8guW20sXc1OeHj/ZAABUnUvjds4Sz+hiph4BfgldzE35vPg5BgBgcufYUr1zyBO5mKlnROeWsJym1B3IRfvtAAAgmk4CT322OXpGZ5uEAM/SmHEvnX5AAQBoVD1RPMdz1Mk/ypnqEhPgOX8zztIz4EcQAIBTaDuNnOoJ8+zPxp0tz8znzHsBlsLx3mZW2Dk81w/OTuVcF+E0CzzHBTgX+ZB5LxEAAEtlyU44lyACpEIjdufheG9zdWs/4twbpj/1nvDoo4+e31IAAAAsouc+97nzXoSZcgv9Qjvd5ZUsy2699da5XJqZ77U3V6MAALjg5nVCPvtT8YvZCr0K/BK6mJsyAABwcVzM1OMZeAAAAEiAAA8AAAAJEOABAAAgAQL8KIc7I7trO+c+4wAAAKCVAN+g7NZ9vTNyus66JA8AAMBsCPB1x3ubWdbt031ynXUhHgAAgKkS4KuO9+6uZvfOQT7aQacy8frm3vHMlxgAAIALQoCvOLzaje8bu0d5nufba2NmWNvO8zw/2t2IiIj9rauq8AAAAEyHAN93+HAnIiI6B9cur5xgvpXL17ql+M7DEjwAAABTIcCXjh9/LCJiY/fKuML7sLUrRRX+scfdRQ8AAMA0CPClo+v7ERE333SS6nvPyk03R0TsXz8612UCAACAggAPAAAACRDgS6uXznAXfO/++0ur57pMAAAAUBDgS7274E/Tlnyv/frT3X8PAAAA4wjwfWu3dSLi5D26H+9trhdzKsADAAAwJQJ8Ra8t+djfWs2yLNsZV4o/3MmyLFvt9h4fnVecqPs5AAAAmFiW5/m8l2GhHO5k3XL6CW3sHp2s+/jpybIsIqxZAABgWV3M1CPANzhxiO8c5Nsn7zx+ai7mpgwAAFwcFzP1uIW+wdp2XjjojJyuc9CdbpHSOwAAAEtJBX4JFdeiAAAAlttFy7Mq8AAAAJAAFXiYoov5ZE7SrLLkWGUpstaSY5UlxypLjlXGhFTgAQAAIAECPAAAACRAgAcAAIAECPAAAACQAAEeAAAAEiDAAwAAQAIEeAAAAEiAAA8AAAAJEOABAAAgAQI8AAAAJECABwAAgAQI8AAAAJAAAR4AAAASIMADAABAAgR4AAAASIAADwAAAAkQ4AEAACABAjwAAAAkIMvzfN7LAAAAAIyhAg8AAAAJEOABAAAgAQI8AAAAJECABwAAgAQI8AAAAJAAAR4AAAASIMADAABAAgR4AAAASIAADwAAAAkQ4AEAACABAjwAAAAkQIAHAACABAjwAAAAkAABHgAAABIgwAMAAEACBHgAAABIgAAPAAAACRDgAQAAIAECPAAAACRAgAcAAIAECPAAAACQAAEeAAAAEiDAAwAAQAIEeAAAAEiAAA8AAAAJEOABAAAgAQI8TN/x3mZWs7l3PO9lYqShVWalJeVwJ8uybOdw3svBkGLV2K8SZc9KgeNXcpwlckICPEzV8d5mlq1u7deH7m+tOglaVIc7WcMqs9LScby3ud6Z90Iw7HAny7LBVbO/tepkNRH2rMXn+JUcZ4mchgAP03O8t9lwIC111v06L5rDnaGAUWelLbrDnVE7HfMyMvztb63arRadPWvhOX4lx1kipyTAw7Qc791d/i5v7B7lfQed3jSde1SeFsjx3j2d3uv6Kquss+isO6IuqOO9zTEnsMxH269h5bfQbrXA7FkJcPxKjrNETk2Ahyk5/sCDxQ/zxu5Rfu3ySmXU2nb567z/4Af8Ni+Kw6u9Y2nnYGCVxdp2frS70X3TedgZ0MI53ttsunOURdC6a1X3Kyeqi8melQbHr+Q4S+T0BHiYjvKXufOK+pG0sHalezTdv340y8Wi3eHDneJF52B7rWH8yuV7y6jhDGiR1B/77OyWZ6oshpG7Vn+/cqK6aOxZ6XD8So6zRM5AgIfpWLl8rbgTqvFYGnF0XUVjsRw//ljxYuPSasskKzfdPLPFYVLVG0c7B3m+fcscF4YG5a7Vua3x13Dlljsk+AVkz0qI41d6nCVyBp877wWAi6l/tbz5lJaZW7l8Lb884bTt50jMS+eg7TSI+erfJ9q226zccsdG7O93S00NtSjmyJ6VAsevpeMskVEEeJi1aqujLTe7sZh6B9SNO24RMhbGSc5cmaebbxq72zz2+HGs2bkWgz1ruTh+JcNZImO5hR5m5HAnK1R+lxU2UlLeUOr8ByY3wY2gbu6F6XL8WnzOEpmcAA8wgbK/l43de5sanAFGcuMuzInjFywXAR5mo2xipq+znmWbOk5KQf+Gts7BNac/MCXaW4bz5viVBmeJnIAAD7NRtjdaKHv43Frd0aPLYjvcycqzH7ezwRSp0sO5cvxKhrNETkCAh1Mon1QaNuHF0rXt8te5c4/rq9N32lV2uJOtdyLC2c/MnX0vA7jAHL8S5iyRUQR4mJe1K7s6P15ohztZ9+xnY/fI2Q+cyuql7g9d++3xDfeOAmfh+JU+Z4m0EuBhbrS8vMCO9zYrpQvPDcJplT90jz0+9hx0gp7mgDEcv5aEs0Ta6AceTmFtO8+3570QnMRJVlmlD9aN3SMnP3NiL1sWq5c2Iva7Jfimven4Aw929zePwMPZOH7BBaACD1NxvLc59mndw4c7xQtVpwXSP/vZ2D1SuoAzK6tInYcb22Lq53c9VMNZOH6lw1kiZyHAw1Ss3HJH99GlravN7Yce793TKV51bvN02qI43Omf/Tj5gXOxdluneNFZH25OueyhWn6HM3H8SomzRM5CgIfpKH+bo7OeDZ60Hu9tZv2b3K74ZV4Mx3ub5WODzn7g3JRtMUVnvVZv6vdxFdF5hZ0OTsvxKzXOEjkDAR6mZOXyvb1z1uis13vBKk9ZHWkXyOHV/moZWGFDdMsKJ1D9OdzfWi13pG7iiIjOgXay4dQcv9LjLJHTE+BhalYuXyu78WykZ9YF0r9ZDTh3K5evtf8abuwe+SmEU3P8SpOzRE5LgIepWtvO8/yovMjas7F7lOd+lxfJ0fX98RMBp7a2nedDZ6sbu0e5xrbgTBy/0uUskdPI8jyf9zIAAAAAY6jAAwAAQAIEeAAAAEiAAA8AAAAJEOABAAAgAQI8AAAAJECABwAAgAQI8AAAAJAAAR4AAAASIMADAABAAgR4AAAASIAADwAAAAkQ4AEAACABAjwAAAAkQIAHAACABAjwAAAAkAABHgAAABIgwAMAAEACBHgAAABIgAAPAAAACRDgAQAAIAECPAAAACRAgAcAAIAECPAAAACQAAEeAAAAEiDAAwAAQAIEeAAAAEiAAA8AAAAJEOABAAAgAQI8AAAAJECABwAAgAQI8AAAAJAAAR4AAAASIMADAABAAgR4AAAASIAADwAAAAkQ4AEAACABAjwAAAAkQIAHAACABAjwAAAAkAABHgAAABIgwAMAAEACBHgAAABIgAAPAAAACRDgAQAAIAECPAAAACRAgAcAAIAECPAAAACQAAEeAAAAEiDAAwAAQAIEeAAAAEiAAA8AAAAJEOABAAAgAQI8AAAAJECAB0jV8d5m1rVzOHbqw51i0s294xks23iVpe+ZZNF6/42TzDPbuc5Hw9czbILVPlfT2+bKr2fyr2D0whzuDQ4u/8Si7DHjTHVzLT58gm97aMMdtxjjt/TJ1vHESwiQOAEeYAl01lM6cT3cybJsdWt/cPj+1uqoU/DDnSzL1jsN84zKCLOca9Y66yLL2RXr+sF5L8ZZTHlzPd7bHPzw1qUY2q/H7NVxdH3oh+DkJlxCgGUgwAMshWQi/OHOUNKo66w3ne2PPEPf31pt/t/Pcq55af6+mNDhTurJb9qb6+FOw8W2hqlG7tetW+nhwyPmmtBkSwiwJAR4gCWRRIQ/3run03u9sXuUVxyUI4b/K8d7d5dn6NXZ+vM0/e9nOdfUdA7yZke7G+U09yzQbQEzsXL5WvEtbK/Ne1HmbLqb6/He5pjrbYXaZZDajt3fTBuX4/jxx7pj27bzMet40iUEWBoCPMDSWPwIf3i1FzY6B/m1yyvVcWvb1ZP9hw8nma06z1CKneVcc7By+VqZ0vYf/MDcl4d5mOLmery32fSgS+OU5WW5jd2j+o69cvlauSANP1C9G+g7t53iSszkSwiwRAR4gORtdDq9M/XFjvDl7bKdg8aq2srle8vMUUnwI2frzzOQYmc517ys3dYpXuxfP5rrgjAfU9pc60+zd3b7N3s0Of7Ag+VFhIGrcr0FeUVvMR8euLWmW4DfuLR6kuU76RICLBMBHiB9l670g+95RfjBNq1Hm6itrPJ22fbT9ZWbbm6fraVKt3LLHQ0xZZZzzV/rN9q0GhtX1mC77oONg49Zw/W/07INjmwIvvyEprGtS9f4lyZamO5Uvduvi7bWRjW3NvBVnrR5uCnsUFPaXKvPuXQO8nz7ltHTl83QtZfRyytNjz1eW47erDff1JD7z28JAZaJAA+wDKq164WtwpcPLjeW6er6ibSs77WG1H5M6dehZznX/PQKsBt33DL0jRYZt+nx4HHNkx/vbQ63Jr6/tdoSbo/3Ngf/Tme98fNXL7V/d/3GzBrGlutl7J3Wky/MiRzuDH2V7V/IzEx3c+0cnLCNgVFl9OZV31vpndvWTnOB5MRLCLAMBHiA5ZBEhB9rVCKdoEo3UN+b9Vwz1W+9a2P33sErIsd7m2MeDt7furs5IXXW2+fsrA/GqtY/tL+1uvPwwLAyTg7eSV2pJTeNnTS/n2hhJvfg3a3NpC3Irna+m2v3Qtu5JuOySl9djvIG+sfuGb7WNOoy0zSWECAVAjzAsjjfCL+23doqdIMJauoTKO+Mreb3CfqJbrjxfpZzTVVnveUm625UHW4NMKpNmw009V9tnXz0bdXVVsErDd4PNhlwdUQT6J1OJ+paE3z/MeqI4bA5YUtnJ1yYYgvvfR/lHEOpcH+/90U3fSETNxA3hR1qQTbXsrrevkFVr8/09Za/+w032N9aPZee7AGWiAAPsDyqEX4B2kk/obJDrIaKcpyinauZzzUXw8XsWtNmQ0FwbbtMn623VXcO6jl25fK1xpn6jyJv7B61NYFeUyb45mehuym7pWHB0fn95AszuUm/kDmZ8+bav0+/5a6Oald31QdWKqm+/UJT660iABeUAA+wTCoNT6d13tu/+7mlJeuJnC5MzXKu89dZH3oUuyz2Nrf1P6You7F7ZXi2MqRVonf/EeyGKy6Vi0lNn1PP6N2I3rntSlHMrX235WMVI2PqaRZmQhN/IYtsmptr/7vY31oduO19RFdv5Q0EA1dcIqJ22WV/6+oiPKcAsCAEeIDlkmKEP9yp3BB+lgdbl7BKX71zu656H/fQs+nN2hu262tqfqBZGcCaH8Hux7ra0O7lg2qg7Eb0jUurvbGV+wrKB6VHL9epFmYik38hi2yqm2vtAknZnn/lSY+N3YPuBJXlKK8ztVyxa+99DuAiE+ABls35RPhp9HrV9oe6ifKM6f2iWbl8rR/im6uUgytxTMN2p9SWDZtL/b0exfqhrBvRN+64ZaUcW5a1e5X1SWP0yRZmhma2Q81F9aGCQRu7R9cux/jn9Yf1nq5P5C4HgJkQ4AGWTzJV+H7vXBu7Ry3pfVTfY10NTWTNcq456hcpB6qUk9Taz+i038Rggu9F9KJ03l0FvVvsJ83vi7VaZmSxNteVy9fywdYGNnaPigJ7uRwn6vF97lddABaQAA+wjBKI8P1u0JpbUu8pT+InqML108Es55qrskhZdbjTXGsv7sfvN0R/JqdOVwNV9l4DdkUTdeVD8kUo7Y4cW3+/kFFvATfXbgdvQ43p955wSKh5SIAFJcADLKezRvipdiNXadmqvfTeM7bO2G+/rJIOZjnXgum3xz74BP10nlBo+7Jaq7/dBF9U2fsPwBcja4/B9xqwmzx+nnhhZmUaO1Qym2vZL8LJriOcrm4PsNwEeIBlVY/wj891War6Dc5v7B5NkFTKOmNLU1b9kFIt085yrnnqN+Xdi2iV9tiPmhJ7GabOqiz+N39Z9b7dm+bcv35UewC+UCnQT9aB3BkXJmELsrkWz2u0P7jfv6JUWZG9mUY87r8olx8AFooAD7C8qhF+qzPfZekp7+5u6juqWS/RRWd9Zyin9PuYHggps5xrbirF9gmLlIc75/ZgfL9l9849wyHs8Gp7i3m9OTsP7xUZrfZ9lgX6qw8XBdgJ8vsZFiZli7G5lj0LNLakWOkFvroiK73Ht/QSV660zitO3bEkwPIR4AGWWaWRs0VwvLdZPvZ+grvu1670msbqrNcKdv3+5xrO8mc51zzUetiu9FVelmX3t1Z3hhq2q8b3s7bt3d+69rdWq53RV9o3aJmzl+C3tioN2PX0CvSdTvXp+KktTDFTrWP6ZCzG5lq5jlAvqLdtoxG1Sy7r2eDlh8pKG5gN4MI7yRNZACyQssHnjd2jUdPV2ywbM/FUnaT1tIGnt1v7qGqefA5zna9xyzBykSb9nqvbwritqW18+9/a2N3ttH9k7T84+I2OHFmbYNL/eOvCDH3RvU887Rcyc6faXMtvapKlb/m2mz/wJIsxwVY+2bc7yRICLAkVeIBlt7Z9Ts2On1Hldu+TW7l8bVQ6a3zYe7ZzzU/nYKB1upFrfGP3oOw8vr37sYmtbTdnt43dey/fNGK+arPxQ484V0dOVn8/9cL068BdyXU5vhib69r2qDQ+tIkWRvUe353thM1jAiw/AR5g+S1GhC+bWzulte18uNBXdjS9CHPNXFFvbIhGa9sN5c2imHnt8lp5s3lL22cnNPzHJgle5W3XTU9oV0aesP2yEy/MYIg8j6sas7YQm2tTP/C9ja79IkLR79zw71PnYORsABdXluf5vJcBAAAAGEMFHgAAABIgwAMAAEACBHgAAABIgAAPAAAACRDgAQAAIAECPAAAACRAgAcAAIAECPAAAACQAAEeAAAAEiDAAwAAQALKWQxSAAABAklEQVQEeAAAAEiAAA8AAAAJEOABAAAgAQI8AAAAJECABwAAgAQI8AAAAJAAAR4AAAASIMADAABAAgR4AAAASIAADwAAAAkQ4AEAACABAjwAAAAkQIAHAACABAjwAAAAkAABHgAAABIgwAMAAEACBHgAAABIgAAPAAAACRDgAQAAIAECPAAAACRAgAcAAIAECPAAAACQAAEeAAAAEiDAAwAAQAIEeAAAAEiAAA8AAAAJEOABAAAgAQI8AAAAJECABwAAgAQI8AAAAJAAAR4AAAASIMADAABAAgR4AAAASIAADwAAAAkQ4AEAACABAjwAAAAkQIAHAACABAjwAAAAkID/D3mBqDBApxAwAAAAAElFTkSuQmCC" title alt width="672" />
t=rank(rd)/n #求观察累积概率
q=qnorm(t) #用累积概率求分位数值
plot(rd,q,main = "Q-Q图",pch=20,col=rainbow(n)) #画Q-Q图
abline(0,1,lwd=2)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABUAAAAPACAIAAAB7BESOAAAACXBIWXMAAB2HAAAdhwGP5fFlAAAgAElEQVR4nOzdebxkZ0Hn/+8TAsKAEQiErVuiQhAFDY7AdENUtqACLtgNds+IAxFkETUMjiCjfVtBgj8nUUaJg0ZGZqZ7pK+AskkPsgh0AzIiGJgQHAjTjURZJKwOEJ7fH3WXqnvr1F267r11znm/X/16peqcpypPk6L7fuo5S6m1BgAAAJhtZ+30BAAAAIC1CXgAAABoAQEPAAAALSDgAQAAoAUEPAAAALSAgAcAAIAWEPAAAADQAgIeAAAAWkDAAwAAQAsIeAAAAGgBAQ8AAAAtIOABAACgBQQ8AAAAtICABwAAgBYQ8AAAANACAh4AAABaQMADAABACwh4AAAAaAEBDwAAAC0g4AEAAKAFBDwAAAC0gIAHAACAFhDwAAAA0AICHgAAAFpAwAMAAEALCHgAAABoAQEPAAAALSDgAQAAoAUEPAAAALSAgAcAAIAWEPAAAADQAgIeAAAAWkDAAwAAQAsIeAAAAGgBAQ8AAAAtIOABAACgBQQ8AAAAtICABwAAgBYQ8AAAANACAh4AAABaQMADAABACwh4AAAAaAEBDwAAAC0g4AEAAKAFBDwAAAC0gIAHAACAFhDwAAAA0AICHgAAAFpAwAMAAEALCHgAAABoAQEPAAAALSDgAQAAoAUEPAAAALSAgAcAAIAWEPAAAADQAgIeAAAAWkDAAwAAQAsIeAAAAGgBAQ8AAAAtIOABAACgBQQ8AAAAtICABwBmwemj+0sp5fDJGX0/ANhxpda603MAAMjJw2Xv3Ja8874jp44d2LUlbw0A28gKPAAwW/YdOVVXOnVkX9OuBifmlt7v0RepdwC6QMADADPv9FtfPp8k8wd3b/io+LlnWH0HoBsEPAC02cKZ3mNs08nf2zKBxX4fLMEf2jO1NwaANhHwANBGi928++B8w4i5vVsa8ts5gZNXLfxL9h25YvVq+sJM9h89fab/HgCYbQIeAFrm9NH9k7p5pbm9047b7Z7AyeNzC4/mD+5evdK/MJP5g7tFPADdJuABoE1OHt5AOi+ZP7h7Wivx2z6B00cvn1t4OHdi0rXqMnfCteYB6DQBDwCtcfro/nE3Wlt1afaFS7aPmtt75g2//RM4ffTSg/NJ9u3bl8ztXfkGJw8vzWfuhHPjAeg4AQ8ALbHYssP2HTlV66p1510Hjo2N6NUBPOsTWDj7fd+RK45dcWRVwi/n+74jp+Q7AJ0n4AGgFcbU89yJ1em8bNeBY8PHly+85PJNnyW+AxNYCPTBofG7DjxjLsMJP5zvY65tBwCdI+ABoA2Wb6S2aD2HjO85tLKg5w9etclT0bd9AoNAH1pb33PJkX1ZSPihg/md+g5AXwh4AGiBpRupLdp35JJ1HTK+EL1D5o5vpuC3fQKDfB+N810HrlhI+OUL6Tn1HYD+EPAAMPtOX3f16IZ9j75onYvOuy569IqAvvq6jR9Fv90TOH308rnMnagr43wx4Rdn4dR3APpEwAPA7Dt17YrD1+91/roPGt91/r1GN8xfe2rmJ7DrwLG6qt6T00f3D93DzrHzAPSMgAeAmbd6/fuC3et/9e4LzngJfscnkIy5A/3c3jKtu9sDQBsIeABg1p0+ur+UpTu+7ztyauny9nN7Syn7N31pfQBoEwEPADNv1QHsfZrAycNlaOV935FT9diBXdlzqC7fo27+4O5SrMYD0HkCHgBm3qpj0PsxgdNH95fhhfd9+0bPvR+J+Cysxg9YkwegiwQ8ADBrTh3dX1auu9djx54xNxTpg/X2PYfqaMUPzB/cvXfVRgBoOQEPADPvzC4kP+kK8oNF7mYLK9lbN4Fx5g/uXUr3uRO11rpwtfk9h2o9tXgbuUHKHz65sH0o4wevWV31ANByAh4AZt+qQ9jnjq/7fO+Tx+dGN2zoCvI7NYF9R07VWsfcSm7XgWPDbT63d+nM90HGj3sNAHSDgAeA2bdqBXx8QJ88vPrs79X5/OiLNn7z9G2dwOKF6hrtOWR9HYA+EvAA0AJ7Ljmy5hL46aOXz628Ivtg27BN9fsMTGDlfA4tHEu/meMJAKCdBDwAtMGuix69MqD3jq51n7zq4Pzw3lL2Hz586cHR08/3HbliZGl714FjdZLlhfAtmsA6rD5P//DJ5alPXKoHgE4R8ADQCrsOPGNuxab5g7uHEnr1ceXzc3Mrrh4394zN5+6OTWDxS4aly9cN3y/ODeMA6BEBDwAtsXTU+JD5g7uHGnbPoZHOXWHfkVNndnm3HZ7AQsivePv5g7uXjtcHgG4T8ADQGrsOHBt38baFs84X7F5x0PrQsEvPdLV6xyeQxY4fncbQtegBoLsEPAC0yZ5DzSvcaxq9vlxLJ7A0jZGKv/o6R9ID0HkCHgBaZteBYxOOU1+Hub1nltA7PoFFbicHQL8IeABoo9VXdlth35FTtWnEviOXnNHJ8DMxgYE9h1ZeLh8AOqvUWnd6DgDAFjt9dP/yqelzJ+qZXc1uayZw8nDZO7cF/+p9R07JewA6wQo8APTA0JXfprf6vVUTWFq7PyMOrgegc87e6QkAANtlz6FaD/V6AgDQZgIeAJgFp6+7OpnyAe87cbIAAGwZ58ADAABACzgHHgAAAFpAwAMAAEALCHgAAABoAQEPAAAALSDgAQAAoAUEPAAAALSAgAcAAIAWEPAAAADQAgIeAAAAWkDAAwAAQAsIeAAAAGgBAQ8AAAAtIOABAACgBQQ8AAAAtICABwAAgBYQ8AAAANACAh4AAABaQMADAABACwh4AAAAaAEBDwAAAC0g4AEAAKAFBDwAAAC0gIAHAACAFhDwAAAA0AICHgAAAFpAwAMAAEALCHgAAABoAQEPAAAALSDgAQAAoAUEPAAAALSAgAcAAIAWEPAAAADQAgIeAAAAWkDAAwAAQAsIeAAAAGgBAQ8AAAAtIOABAACgBQQ8AAAAtICABwAAgBYQ8AAAANACAh4AAABaQMADAABACwh4AAAAaAEBDwAAAC0g4AEAAKAFBDwAAAC0gIAHAACAFhDwAAAA0AICHgAAAFpAwAMAAEALCHgAAABoAQEPAAAALSDgAQAAoAUEPAAAALSAgAcAAIAWEPAAAADQAgIeAAAAWkDAAwAAQAucvdMTYEuUUnZ6CgAAAFuo1rrTU9huVuA7SL0DAACd18PwsQLfWT38OgoAAOiJHtZ7rMADAABAKwh4AAAAaAEBDwAAAC0g4AEAAKAFBDwAAAC0gIAHAACAFhDwAAAA0AICHgAAAFpAwAMAAEALCHgAAABoAQEPAAAALSDgAQAAoAUEPAAAALSAgAcAAIAWEPAAAADQAmfv9AQAAACYSeW3R57Wn9uhebCg1Fp3eg5MWSklif+yAADA5q2o9yWzkfH9rB6H0AMAAEALCHgAAABGNS2/T97FFhPwAAAA0AICHgAAAFpAwAMAAEALCHgAAABGTbjU/Gxchb6fBDwAAAC0gPvAd1A/74gIAABM2YoLzs/S2ns/q0fAd1A/P8oAAEB/9LN6HEIPAAAALSDgAQAAoAUEPAAAALSAgAcAAIAWEPAAAADQAgIeAAAAWkDAAwAAQAucvdMTAAAAYAeU/Nbw05qf36mZsE6lbze+74NSShL/ZQEAgCYr6n1JWzK+n9XjEHoAAABoAQEPAADQL03L75N3seME/EadPrq/DNt/9PROTwkAAIDuE/DjnDw8PtBPHi5l98H5kbHzB3eXcvjkdk8RAACgpwYnwPeQgF/h9NH9peydW94wf3D3IOJPH90/vH3E3F4NDwAAsMUGy6w7PYsdI+BHnDy8coE9STJ/8NKjJ9/68sU9cyfqshNzCxv3OpgeAABogwmXmp/Zq9D3PN0HBPyQ00cvnxs8Wk70U0f2Jcn8wb2Dst935FQ9tGfoRXsOLUb8/MGrrMIDAABMlXRfIuCXnV5YY587MZTouw4cW1xjT7LvyBUHdq1+5Z5LBpk/d1zBAwAALbB6pb3m52dt+V26r3D2Tk9gdiz0+74jl+wZ3bHnkiP75g7OJ9n36IvG5HuSXRc9el/m53P1daezZ/wQAACAM1Ny/+GnNe88k3ebtVwfNqHba62TB3SYFfglp66dT5J7nb8qwHdd9Oh9adi3OOT8eyXJ/LWnpjqnsilTnQIAADATVtT7YMvqjW03IWoGpzlv83xmioBfj4U8BwAAYItI9zUJ+JWuvq75WvLN+05fd/VWTKZuylbMBAAA2EETVto7sAgv3ddJwC/ZfcHgevMvf+vqSt9zqNZa67FxV7BLsnT8/dzFexoGAAAAsIJ03xABv2TxTPdN3A3u5OG9c0my74Ld054VAABAB0n3TRDwy3YdeMZckmRubymH1xnxJw+XUvYuvO4ZjSv0AAAAJNL9DAj4YXsOLd3zfW5vWavih9s9ydyJQ46fBwAAtsKEO8ad4c3kts3k22ZJ9/VwH/hRew7VE1ms8jWOiN99wb5kfvB47kSV7wAAwBTdfUXqtjZvJ9/rWrevnxX4VfYcqrWemMuk274PmztRq3oHAACmaWW9J3cr77xbGVlsr3nnjC+/T1hyj1X3jSv+9+qewf9D/JcFAID2Wh3wAx9qyY/5W73q3s/qsQIPAAAwW5rqffKuGbHmie59q+4pcg48AAAAUzD5aPntnElXCXgAAADOiHTfHgIeAABgtvzm6NNn7sws1kW6bycXseugfl7OAQAAuuFPG4p4kPGzcxG7nU33flaPFXgAAAA2wKr7TrEC30H9/C4KAAA6oGn5feCHd/pn/NlJ935WjxV4AAAA1jA76d5n7gMPAACwk8oNy79m0Jr3dd/m+fSZFXgAAIAdM5vRPmDVfdZYgQcAAJgVP/KZxl3beQK8VffZZAUeAABgZ8zg8rtV91nmKvQd1M/rMQIAQFuUfOPCoxv+79gBr7z1yNPtWXtvV7r3s3oEfAf186MMAACtsFzvaQz4gfoNWz6ZgXal+0A/q8ch9AAAAD3VxnTvMxexAwAA2CYjy+9JvuEbGwZu+fK7y9S1kRV4AACAbfTE0cPmf3O7//1W3dvLOfAd1M+zQQAAYPaVJzbsGMr4rVt771K697N6rMADAADstG/4xiQ1k65pdya6lO59ZgW+g/r5XRQAAOy478xIJ783Iz+TNy6/J0nq72/FjDqb7v2sHivwAAAAU7Ci3pe2rMj47TGh29O/7u0MAQ8AANAd0r3DBDwAAMC6HB1dYz8wtLS+evl9eNf2LMJL985zH3gAAIC1HV2V6EdTVm+cYMJZ7md4AvyEm7rHfd07xAo8AABAW3X1GnWM5Sr0HdTP6zECAMAWuXK0kW9dVzbzgdQJh9Bn9Dp2K65Fv+m1956nez+rR8B3UD8/ygAAsBWubMjk4YwfnAzf1PBTPwG+5+k+0M/qcQg9AABAO0j3nnMROwAAgPGalt+TfKasDObVK+3vTZ3W8vuEy9S5Rl1/WIEHAAAY56El68jv4ZvJbcXt4qy6s8Q58B3Uz7NBAABgasprhp9dmUeMHTU4Df7Alt3jXbpP0M/qEfAd1M+PMgAATMdovS9ZnfFP2bKfuKX7mvpZPQ6hBwAA2LAtqnfpzgQuYgcAALCovCr52tCvZU/J+JX5qf2bXaaOtViBBwAASDKo9xUGDT+y8PmUh5S8YZo5bdWddRLwAABAH5U8afhpzYvXfMlTHlKSTLHepTsbIuABAIDeWVHvydjl9yVfm/rZx9KdTXAOPAAA0DMPb4znSR7yyLyhnvnyu3Pd2TQr8AAAQJ88vJTXP3EzL5xGujft0u2sh4AHAAB65ndHT3d/2qrD6VerK28CvyHSnakoPi7dM/jTwX9ZAAAYcX1JUv6k4efkpz2plkeN31Ubtq+DdN8i/aweK/AAAEAPXL+p897PgHRn6qzAd1A/v4sCAIAxnrlY0c9MJiy/D6xehN/U2rt03wb9rB4r8AAAQEeN1vu6nMHR8pHubDEBDwAAdNZj/mNNkv+4+Px3Jg2uefGk3RNJd7aBQ+g7qJ8HkwAAwIhnloV6X+VYQ8bXp234XzKh2+Nn8q3Uz+qxAg8AALDhepfubD8r8B3Uz++iAABgYFdKkr1l0s/Dqxfh1x/w0n0W9LN6rMADAADdMaj3DZHutIWABwAAeqf+WMkdN9DbrlHHLBDwAABAR2xg+X3d9S7dmR1n7fQEAAAApuF/jpT2sbc2Dpywa1gppanea63qne1nBR4AAOiE+488u8sDSzK+sesD13gnq+7MJgEPAAC032fHJPext2b/RSu3TCbdmWVuI9dB/byhAgAAvfbZUs75yeENd8kfJfnY20Z+Kp6w9i7d26Wf1SPgO6ifH2UAAPqp5E9GN7xq+Mkg45OcbjicPtK9nfpZPQ6hBwAA2mpVvSd5VJLhjH/4hJdLd1rFCnwH9fO7KAAA+qZcNvr8WcMxvxzw9TZ/lH9a+bOxdG+7flaPgO+gfn6UAQDoha8thHf5jYYfd5czfqHha/7L8H7p3g39rB6H0AMAAO3w8yk5a/Mvl+603Rl8/AEAALbLlSX3KHXpV+O4y35s9bZSSlO911rVO20h4AEAgFl35ar6ftGz86Jnr+OV5Y+kO53hEHoAAGB2lWckyYs2/LpXpfxR0z7dTku5iF0H9fNyDgAAdEZ5wsjTF71k0uCnPn/Vpmc71737+lk9VuABAIBZUn5tuMnK4395A6+V7nSagAcAAGZG+bUVG+pLfi3JlVkr46U7PSDgAQCANpPu9IZz4Duon2eDAADQequW34etXoR/aqR7f/WzeqzAAwAALSPd6ScBDwAAbKtrRuv7WwfFXX53Pa+V7vTZWTs9gZl0+uj+MmT/0dPrfcHhk9syQQAAaJ3yopQXraz3JNeUMRtXvja/8tSUpnqvtap3+sAK/EonD5e9c6Ob5g/uLgczd6Ie2rMjUwIAgLYrL0p92pOHt1yT31t6/K35z0mS2yafXvnC/MqEt9Xt9IoV+BFj6n3J3N51LMUDAABjrKj3JN+aJ39rVm4cVvIrE+rdqjs9JOCHnD56+dzCw7kTdcmpI/sWts4f3K3hAQBgg354rSPkkyweHXzbSHdoIOCXnbzq4HyS7DtyauRg+V0Hji1XvIYHAID1eXDKg1N+uORPm1faVyzCl/xMU7ovLbBNeZbQHs6BX3L6uquTJHPPOLBr9d5dB47V8wcH2M8f3L0/p46NGwUAAP1W8oShZ49/UF6ynlddk5++p8vLw1qswC85de18ksxd3Hiluj2H6om5JNu3Dl82ZevnBQAA45QfrOX6pV9Jvr6s3d73TGmq95rfU++wRMBvzEjDu2ccAAAsKT+4YkMt1/9pVm4ceUX+c1m4/vxKC+lef3pq04P2cwj9hu05dOrI1bsPzidze/dfsLWH0m/u60aL8AAAbI+Sd9byijWH/XB+709Xnus+vtvjgHloZgV+ye4L9iXJ3PE119V3HTi2cE07y/AAAPRTSUoyVO/vaxq5YhF+0qq7a9TBRAJ+ya6LHj0o+L3raPJdB65YuCz93F5XpQcAoEdKvrqJAz5/OL8n3eEMFf8/WXb66P7dgzvJZd+RdRwbf3JwVfphcydG7kC3MwaH0PsvCwDAdF08Gu7H86yhZ40r8ElKXte0y0+tbE4/q8cK/JDlZfXMH9xdSimT1+KXr2gHAACd9ZyU56RcvKnrLJW8rqnerbrDRgn4EctntydJ9l2we40X7DlUh18AAAAdU272vHLT55WbHs/NjudmzeO+Y+XrpDtMm4BfadeBY3VDUb7hFwAAwKx7aslTS1JWFvtaGZ9Id9gyzoHvoH6eDQIAwFSUvPIp5UcGj1/U0OoX58uDB6OnwafkBU1v66dTpquf1eM+8AAAQJKUhThYo96THM/Nlhp+4bXSHbaegAcAgF4reVCSnP2mwdOn3LiB116cy/5nGq9uJ91hugQ8AAD0VbkySc1jkiRXlps8ZUOvlu6wzVzEDgAAeqlcuWJDvfHKeuPKjeNfmq801bvL1MHWEfAAANA737OOm7o/dfQs94GSr5R8Zex46Q5bzVXoO6if12MEAGCCF40W+1MzaaX9qVk4ln74OnZN3R4/ebIT+lk9VuABAKDj/qDkZln+tX6DRXir7jAjXMQOAAC67A9KfirfM7Ilfzn5JVfeZOFa9FeuPlF+kW6H7ecQ+g7q58EkAACs9smU25WLGnYeaHpVyVMnvKefM5kF/aweK/AAANA1Jf9p8OD3S12x/L7WC6U7zC4r8B3Uz++iAABYUF459OTyiUOXF+GlO+3Sz+qxAg8AAB1SXpk8cXTTPdd4hXSHlrAC30H9/C4KAIAkKbdv2DEm40ve2vQ2fphkxvWzeqzAAwBAy5UvLT6aW+8rpDu0kBX4Durnd1EAAD301pKL8qWhDd84cfg9I93pin5WjxV4AABopbeWFRvmJo+X7tB2Ah4AAFrmkSXHku9ObjGy/N6o5JNNu6Q7tIiABwCAVil7Xj3y/I2Txkp36JCzdnoCAADAurwgJWXPqs0PTh68+PgJS1tLPtlU77VW9Q5tJOABAKAFfq3ky2Vydc8N/iHdoatchb6D+nk9RgCALisXJUm+OnHQG0v+RdM+PxzSMf2sHufAAwDAbFuo94lD8o401HvfCgc6TMADAMBM2lPyjsckn508quQdTbukO3SMgAcAgBlT/neSZFDvn28cJd2hZwQ8AADMgPKi0ecPGjfo7MFp8NId+slF7Dqon5dzAABosfLQ0eePTt6yePD8yAp8ydua3sOPf/RKP6tHwHdQPz/KAACtVN6Y/HrDvpsmWQp46Q7D+lk9DqEHAIBtV/7L4qPXrDX0ViV/3rjz22u9ejozAmafgAcAgO3ykZIk33yL0a17G0Z/peQvmt6p5oGpb53axIA2cAh9B/XzYBIAgBl3Xson3lPrd42/W/uKjJ+c7jfkrdcm9/XjHj3Wz+oR8B3Uz48yAMBMK09YfPQ/GkYsBPzEdP/+xUevm9a8oKX6WT0CvoP6+VEGAJhN70757vL4xWdN9Z4kJV9q2iXdYYV+Vo+A76B+fpQBAGZRudXo86+NHzUp3T/w1dzzbD/Zwah+Vs9ZOz0BAADooNeU1fW+UsmXBr/G7v1K6ldSU9U7sMBV6AEAYKrKC5I8YvKQ5iX3JPl3tf7mNGcEdIND6DuonweTAADsrHJpktTfesHihl8bPyxfmPAmNfuSpB6b5sygi/pZPVbgAQDgjJXX1/z4GkOkO3BmBDwAAGxSySOS1PKzmVjvE9K95hapX5z+zIAucgh9B/XzYBIAgO1W3r346FPjAv4rWSPdH59zX5JP+pkNNqOf1SPgO6ifH2UAgO1Tnjf6fMwV50o+0/TqmseX9/1hknrvKc8L+qOf1eMQegAAWK9vL3l/npdcNWHMxHS/ZZLkp6Q7sAkCHgAA1lay+9vKqUPJhHpfR7ofT9079bkBPXHWTk8AAABm3Xklty+nDiWPyfPGDij5TFO911xWc9kv5/Opn1fvwJlwDnwH9fNsEACALVEePPr8upX785Gml9bcOnlWclapr6x5+/TnBj3Wz+oR8B3Uz48yAMB0lVxWy/FVm68bGjA53ZOk1G+T7rAV+lk9zoEHAIARjylJUvP80c3/cunRetI9eVPqhf1qC2CLWYHvoH5+FwUAMB3lg0mS+43fmc82va7mm5KXLayQ1Qu3YmrAkn5WjxV4AABYtFDv4/aske65PB9+xidKbtevnAC2kxX4Durnd1EAAGfiKyk3Ld+4+GzkevJrpvvikw9vxcSAsfpZPVbgAQDou9F6XybdgZliBb6D+vldFADAJlxdkuRe+bbkC0ObPzMx3R/0srxx8PgxfuCCHdLP6rECDwBAH5X81d+W+2ZVvZf836aX1JwzePCztVyffmUDMAsEPAAA/VL+Q+rzdo32902yvnT/htyQ5IYtnB1AIwEPAECflAfUfHTltnWk+8AN1t2BnSPgAQDovvLsJKmXPWDl9nys6SUr0j3VujuwwwQ8AACddVZKvWTFovnC8vvEdF++Iv2P5qNJXmHhHZgBrkLfQf28HiMAwIiblHztCaObrkmSfHSd6T5Q7vrRet2UpwacuX5WjxV4AAC6pfxBkuQJY/bkRNOLau6yatvfpd60X3EAzDYBDwBAV5QvJy8dszl/OOFFo+l+y6EdN53WvACmQsADANAJ5SdHn5+djaV7snTVuvqBKc4LYFqcA99B/TwbBADotZX1njJuKX7JuAPmUz54ul4wzUkBW6ef1WMFHgCANvvHkjs8b3jDWum+N0lW3gr+nal36VcHAC1kBb6D+vldFADQN+V2+Z+fykNz/vKWlVm+rC5f0+6a0T0vSx2zGg/MuH5WjxV4AABapuQNud1Dh+t9femeJOUJb09Sn15y2O3dgZaxAt9B/fwuCgDovBemfLws/4TzkOShOX9iuj8uyYolq1JfVvO5rZoisF36WT1n7fQEAABgLT9Yyh2yot4fltJU7zV3Xaz3Yf8u9Sr1DrSXFfgO6ud3UQBA95TcspavDW95dr6U5LKUppfU3HXx4fcmSS7K4Kp19du2Zo7Azuhn9TgHHgCA2fIXi3le87UVu9aX7ss+lp9ycXmgMxxCDwDArCgPXq73lbvyzyX/PHZXzV3H1fs9Sr1OvQNd4hD6DurnwSQAQIuVK4af/UUuTfKQ3GJhZ0O3p2HVPUm51XXVqe7Qaf2sHofQAwCwo8oVGb2w3EOy0PMT0v1ZqQ9JMnQT+GHqHegkK/Ad1M/vogCANiofSr3g20e3PTZJyaGml9TcPItXsxvcSW5093XTniMwi/pZPQK+g/r5UQYA2qf8QvLaldvygabhg3QfGAT8wGVnJUm9ccqzA2ZZP6vHReyWnDxcztzhkzv92wAAmH3lrEG9j27MB5rqvebmY+v9srNy2VmpN6p3oBecAw8AwLYqZ6XWa5IsLb+vc9V9yQuTJF+oef70Zwcwu6zAL9lz6NSRfTs9iRU2dxjATs8aAKDRc1zn2kMAACAASURBVEueX5NcNXg6cdX98Buy8uDYW+ZLt8yXvlDzhX4dNguQOAd+lZOHy965JMm+I6eOHdi1s7M5kxr3XxYAmBElL6xlbnTbJSW/2TS+5tuSJI/9i/xKkofOpZ5TkuRSP94AC/p5DryAX22p4Wch4Tejnx9lAGBGlf+ePH1kQ/6paexiuifJi/P+JD/95NQrt25yQFv1s3ocQr/a0rH08wcvPXp6p2cDANBS5Q5J+U/Jp5e35J+a6r3m24brPXnsTz85T6rqHWCZFfjxTh/dv/vgfJK5E/XQnp2ezQb187soAGCGPKfk19+cvC9JcijrXnUf2vr+LZkY0BX9rB4r8OPtOvCMuSTJ3OUW4QEA1utmJb9Ykl//peR4cn1y/cRV99vUPHPFxtfm/eodYCwr8I3auwjfz++iAIAdVD6T/Hju9Pr8RPKCPGdhY369aXzNbRYfXjK0+ZK35Vsf6EcYYB36WT0CvoP6+VEGALZbuUfykeENd86XfyL5jUy6jc5Qug+cGPxDugMb0s/qEfAd1M+PMgCwrVbVe5KSr0x4xap0z2WL17d7lh9bgA3qZ/WcvdMTAACgHUp+Lnnk15eHfXbVZec2mu4DX01++ZtT/8/UZgjQbVbgO6if30UBAFurXLz46HRy49Ly+1rp/kuLD0duB1fu+On8C+kObF4/q0fAd1A/P8oAwBb5bMk5uXhow0LAT0j3oW5f4Y5JUp8+zfkBvdTP6nEIPQAA45Q3JUnefM7I1tNJSq5telHNTZvf8Y55+89mb79+2gaYIgEPAMCIsiv1Y3ca3XbvhV35302vmpjugxFPT6y9A2yeQ+g7qJ8HkwAAUzGu3pOk5Pqml6xI91/Ml5duBb844nlTmh3Agn5Wj4DvoH5+lAGAM1J+dejJ6AXn1p3uA3fOlwcP/v6VJT/sBxJgS/SzehxCDwDQe+VXkw8sPnnL8uZJ6X7P4WvRLzr9+/UOf/+/Sv5lXRgFwPRYge+gfn4XBQBs1OGycH/2n82PD21+S9ZO9zFKfe/ap8EDTEk/q8cKPABAL/xkGXn6zVmq9+GD5yen+x0Xr2Z3euQl9b01N+3XD9EAO0HAAwB0XDk7j7txwv6Fg+dL/rhpRB3cv33ZrjfneJLvq4O9AGwHAQ8A0Dnl08kTl57V5CfzJ8P7l5bfF4avN92fNPjHm3P4+1Q7wLZzDnwH9fNsEABgwWi9D1vK+KWA/7mUsSMzZtU9yZNSD09hhgBnrJ/VYwUeAKAjytflAV/O2/LR9QyemO6PHb4WfZK87fo8oF8/JQPMICvwHdTP76IAoM/KhanvfdTotpuNHfmT+ZOXrpHuwy5Nknr/M5wewNT1s3qswAMAtNvxkppHrdr85SQrMr7k5Wmo91XpPtgq3QFmiIAHAGix442r6SNKXt6067cXriI/fCv4lHqrmj84k4kBMHUOoe+gfh5MAgC9Ux46+vwW40fl1U1vMJd6m9EtP1d/Kol0B2ZfP6tHwHdQPz/KANAX5c+SzyQvbdi9nPET0v1xqS+9IPngf06SvCZJzZ9Nc5IAW6yf1SPgO6ifH2UA6Ljy3CTJ74xuvdeqcbfIxHTPTWq+JSc/WP5V/KgAtFg/q8c58AAAM+1eJVdnbL0nuXowZOn5pHS/sOY99178UbdfP/ICdIMV+A7q53dRANAxJXtreUDyxqFtH2sYe68kJX/R9FY1f516n6nODmCH9bN6rMADAMyc8rXUm6yz3ien+x+lPm6qUwNgxwh4AIBZUi5Nfnt0RWn84nnJP0x4G+kO0D0CHgBgNpSbJBl3dvp7kiTnLQ+cmO6vSn322LcBoOUEPADADFio97VGrbHq/pDknNQ8ckqTAmCmCHgAgJ1U3p76wJ9dfNa4br6udM+/Tv2xqc4OgBki4AEAdsAfljwh/zoLyf4/JowszVVfc4ckye8mke4AnSfgAQC2z1fKwoNBvU+2ZrqXp19fXzilmQEw8wQ8AMB2KO9NvfD4Tdc5eFK6f1fye6n3jQvVAfSMgAcA2Fr/WHJezh2N7e9vGFtKvtb0PjXfVepVyYXTnBwA7XHWTk8AAKCbyr9Jyvkp55+Xc1ft/PPkz4eenpuk5GtN9V5Tah6Z+r+qegfoMSvwAADTV/5N6n8/f72D84mmXTUl2ZX6f6czLQDarNTq5KmuKaUk8V8WAHZM2T305IuTBubTTbtqbp8k9R+nNSmALuln9TiEHgBgqsp5yf8b+tUwKp9uqvea29fcPvkF9Q7AMIfQAwBMwQ+VXJj8as5bc+TEVfeDybnJ7tRfmOrsAOgCh9B3UD8PJgGAHVOenFyz+OQDq3bfuDxwjXT/keR+qXed9vwAOqif1WMFHgBgs8qR5C8n1nuSmyQ3Tkj31HvW8S8EgBHOgQcA2LiXl5TnJR9Zc2DJJxrrvc7VWtU7AOtkBR4AYN3K0kXpnpskOTW0/L5qbPPN4VLnag5Nc2IA9ICABwBYyyfK5efVZ+RnkhWXhb/t2OGT7uves9M1AZgiF7HroH5ezgEAtsonSs77bPLsVfU+MLKx5C2N71P/Vc3JKc8NoK/6WT1W4AEAxvtXKe8oP5ecm3zT0OYHjx08Id1rbp/sS1407QkC0C9W4Duon99FAcAUlfxqsruWv0xe1TDkwUODjzW9T83tkx9K/YNpTxCg7/pZPVbgAQAWlJKajyepeWLyS2uPn5Tu35vcTboDMEUCHgDovfJ3yUuTDK3jPCVJ8/L7Gule3vXm3Hd60wOAJA6h76R+HkwCAJtR/jh5yeim+yVJTiUZG/Aln2p6s5rnJmelPnt68wNgvH5WjxV4AKCvyi1Gn39vkuRdSZI7jRku3QHYUWft9AQAALZdmVtV70neknFXki/51ODX2Heq2Z/H19TnqHcAtpoVeACgZ8rcOgZ9PLnThCX3DNK9viwjZ84DwBYS8ABAj5ws2ZMkL2ge8pbke0teP+FNas5N/eSUZwYAa3ERuw7q5+UcAGCS8m9Gn/9J48D884S3ke4AM6Kf1WMFHgDorJIH13LP5Ib1DW5M95p/myT1JU0DAGAbCHgAoKPK42p2JZ9be+CEVfdn1SR5/vRmBQCbJeABgE4puVstf5Zctrjha+NGXZBcm8mr7j07LBOA2ecc+A7q59kgAJAk5Zajz3+sIeBT8t+b3sPfoQCzr5/VI+A7qJ8fZQBYVe9LfnRk1IR0z3ekvneqcwJgS/SzehxCDwC03r8o+WLeveYw6Q5Aqwl4AKDdPrRQ79/bPOQVJV9s2nci9dpaEvUOwKwT8ABAK5V8X5JaPnX3NYZNSvdn1vKmlF9Kv47ABKClBDwA0CZHSw7ki8mFo839datHTkj3udTjtbwp5e3SHYD2cBG7Durn5RwA6Lz5kn15X3JF8vZx+z+29GhCuqeeqNkz/ckBsL36WT0CvoP6+VEGoJvKnUefPzxJQ8An+diEdL8xNclZ/noE6IR+Vo+A76B+fpQB6JjyTanX3blh563GjM+Hmt5KugN0Tz+rxznwAMDsKeeM/kQ2ptiXxzan+4elOwAdIuABgBlS7pl6zTmrNn8+yVDGf37weEK61/xVknI89WHTnyQA7AgBDwDMhvJ/kvVeFH5iut8recmRfPfB6hLzAHSKc+A7qJ9ngwDQYuWryUcXn9xn4tBblXy8aV/NvRYf/e10JgbArOpn9ViBBwB2xrUlSS7IV9c5vuRzyefG7qq5++Ij6Q5AZ5210xOYaScPl0kOn9zpCQJAO5Vbp9z6gtz6gtw6uV3yV2sMz+dKc7rX3L3UO6Req94B6DaH0I9x+uj+3QfnN/CCuRP10J4tm86G9fNgEgBao9y6YcfrkvNWHELf1O1Jav5tktSXTG9mALRGP6tncyvwa6xMr89Mrl+fPrq/lI3Ve5K5vTP62wGAmVK+JeVb1hr0noWxzavu70t9X2rqS9Q7AL3iEPphp49eOtzucyfqZCfmhgbv3X/09LbPGABm3wtKXlCymO6fah74A8k/ltxt0gHztdZa711z736tuABAIuBHnLxqId/3HTlVa137sPg9h2qt9dSRfUmS+YNXWYUHgCHlDfmnkiclT1rP4NxQsrdp7yDdpzg3AGidzQX8nkND3brUu02r02N3ryOPt9vJ43NJkrkTxw7s2sDrdh04tvCbnTuu4AEgSUr+S7lp6sNedpsMfk06cr7khpIbmvZKdwAY2PQK/MnDuw/OL8T52N7dc2ix4ucPXtqGg8tPX3d1kuw7csnGv1nYc8ng24yrr2vBbxQAtlgt+Vr5t/WrL1tz5OR0f1ft3dWJAGCCTQb8ycN757KOteo9hxYSvgUHl5+6dj5J7nX+RlbfF+06/15JMn/tqanOaXOXB5zqFABgvR5e8vCSusZfROcO/jEh3U+lDtL9vlHvALDs7E29amGxeu7itdeq91w8l7m5zB0/eWjPrB0zDwBMR3lxktcvP784eVfj2OYl91Opu2qS7JLuALDK5lbgFxaru2X3BWdwFPzi8fcX7J7qnNa4Cn6DqU4BABqV/NfyjQv1Pup48pnRLc9PUvLhkg+Pfaua59S6UO8AwFhndBX69bTuwpXhpl22W2DxKPjNHO6/eP36zR1/DwBtVJ5Vy7F66oeSVy/+ah6bx05I9/+WmvrcrZklAHTHJq9Cf/Fckswf3H14YuyePrp/71yS7Hv0RbNftgu/qw3f0X3pd9mGrykA4MyU/EbKE1OemHxg1c4VGf+ZLKT7Y8e+1X9LHaT7v7bwDgDrUDZ5xPXpo/t3H1w8jn7uxOp7wq05YBaNTHod0z55uCyk+/rGb5PBdewcSw/A9JXvG31+zrhBj1wYm59ufJvUetvUT01tXgD0TT+rZ7MBvyp2m+07cmpj91XfUSuafP1m6LfZz48yAFur7F215H7h4oOVGV/yqqa3qfnj1MdMdWYA9FE/q2fzAZ+sp3ZnZVF6QzYc8TP2u+znRxmALTSm3pdcOBzw0h2A7dHP6jmji9hlz6Faaz11ZN+YfXMnaq0z1bXrNvht1VpPzE0cN/gttvV3CQDrcmNJ8qWJQz6bpORVTfX+4tQnpqp3ADhDZ7YCz0zq53dRAEzZU8sHr6xJ7pEJy+/JxPu613zkSTn/xf5GAmDa+lk9Ar6D+vlRBmBqyltHn/9s8pHxAyeme+r505wVAAzpZ/WcvdMTAABmRnlD8oujm35r/MDmdL9D6vX9+mkKALbJmZ0DDwB0wp4ytt6T/PyK5yU3NNb7D9Ra1TsAbBWH0HdQPw8mAWBz3pVyv3I8eU6S5MZxQ76WJPnIhFX3/ECtr92CyQFAg35Wj4DvoH5+lAHYqC+XJLlZjiZXJGmo9yQp+eumXf66AWBH9LN6nAMPAP1TXpLccLP1DJyQ7rkw9T1TnBQAMJmAB4BeKHfPrr/LqXwoeVtGDoY/Mn785HTPG1LPnfYcAYBJBDwA9EB52Oghho+YNHZSun8yiXQHgB3hKvQA0GX/viTlYas2vyZ5zaqNNyn566Z6vyb13NTUc9U7AOwUAQ8A3VXmfyMPX9fA/FXJX43dVfNd56beo+aT/bpOEADMHIfQA0AXlQ8mf5scX7wJ3FivSR7R1O1Jar4r9X8lg+PmAYAd5jZyHdTPGyoAsOANJQ97zOKTzzQFfMkbJrxHzX2TpL5rulMDgGnpZ/UI+A7q50cZgCQp9x19ftvVAS/dAeiAflaPgO+gfn6UAfqsXJck9Zvu27D/1gvD1kj3K5I7pB6Y6tQAYEv0s3qcAw8ALfbkkiQ1vzt52NrpXn9+irMCALaCFfgO6ud3UQD98qpSHnWylrcNbfrjsQNL3t30HjXX/nzu/lv+ugCghfpZPQK+g/r5UQboiZKTtfzO6Lb7JFkd8BPT/eJP5fXn+osCgNbqZ/UI+A7q50cZoPvKq5Mkl4xufejig2uXB05M9+SuqS+e9uQAYFv1s3oEfAf186MM0GHvL/n2jK33JQ8dBPzEdH9ikivr7z8l/oIAoPX6WT1n7fQEAIBG5WF5f1nfyLy7qd5rHlPzmCvr76e+WL0DQHtZge+gfn4XBdAx5aPJT+WqN+T+WWP5veQfm96k5ruT/If81XP9nQBAt/SzetxGDgBmyydLknxi8ek/NI9cT7o/7xOpt5vi7ACAHSPgAWCWlO8Yzu1P5n13GDtqUrovXKO+fOJp9XZ57lRnBwDsIAEPALOh3HP0+U2T3C7fkST59eVRk9L9/1t89LTEye4A0DUCHgB22MdL7pRzR7edl3wlySDjP5lH3i6vnpjuB5P7lL95Zv3OrZwoALCjXMSug/p5OQeA1in59lqeniR5TsOQ8wYBX/K3TW9Sc16S1AlnygNAB/WzegR8B/XzowzQFuX5qb+0N0nyxcVtpxrGnldyTdP7SHcA+qyf1eM+8ACwjcqb11nvJZ9uqverUvPCmvoP6h0AekXAA8CWu0vJXUpS3pzcuObgkk+XfHrsrqtSc4/6hJr69CnPEACYfQ6h76B+HkwCMKPK/Uef3yTJ0PJ7hlfgm7o9SW5Rk9QvNu4HgF7pZ/VYgQeALVFeuLrek9w4dhF+wqp7zb1fnVq/qN4BoO/cRg4Apu+XS2qetp6RE1bda741uTj1tx8xvYkBAO0l4AFgmv5rSZILkuTdk0eWvLdpV81tk6T+7+nNCwBoPYfQA8DUDOo9yU9MXH4veW9Tvdfctua25cmfSv3U1KcHALSaFXgAmIKSD3243P2Baw97V9Oumu9MUp78N/XK9OuCPADA+gh4ADhj5cLR5H7Hyv3N3Z7FdE/9m0S6AwCN3Eaug/p5QwWA7VdukST1ny9s2P+A5N1rpfsbPpaH3MUf2ACwQf2sHivwALAx5VjqYw5nrdXykhdN2Ht68Oqau0xxZgBApwl4ANiAHy+pOTy04RWrx0y4vHz6t1YAAEyLq9ADwLr8Q8oTSn5r4piJl5d/aurH1DsAsGnOge+gfp4NArCFyv1Hn//g0OOFFfgJq+4vTX3cr+UX/kP5DZeoA4Ap6Wf1CPgO6udHGWBLlL9Nfqph3yDjXzEh3Wu+9Fu5+V8nL/VHMgBMVT+rxznwANCg/O0a+zPXtKvmO5N3fCQ3f37yD/360QIA2CpW4Duon99FAUxTudvo83NX7m++OdzCTd2T5B2pN5/qtACABf2sHgHfQf38KANMxe+U/Ezu1rDz3Eh3AJgN/aweh9ADwILfKfmu5r0T030uyUtzKMnj+vWDBACwfazAd1A/v4sCOBPlZ1J/d9DnB8fszf9peuEg3a/PoTt9IPWeWzQ7AGClflaPFXgA+q1cl6TmH8fvbE73j6cmuT65Y80d4wZxAMCWE/AA9Fi5LnnA6KZbLOyZtOp+vyRPSL6S/FfhDgBsFwEPQC+Vwdnu/7Bqx5dK/r7pRYN0/4m8M9IdANh2zoHvoH6eDQKwTmV/6vzStepGAn5iun9L8or35N5J7uPPVwDYaf2sHivwAPTF95W8Oa+t+dzihuV6Xyvdk+Q9ufcv1/JqZ7sDADvkrJ2eAABsuZK3Duo9SfKC0V1/31TvNd8yqPdX5u/Ko/7uPjXqHQDYQVbgAeiu8qbkKRm5RPzh5Z2TVt3vnLwiyYncL8mPVOEOAOw8K/AAdNArynK9jzqUfLHkPSXvGfvCmjvX3Hnp6fXJXu0OAMwGF7HroH5ezgEgyb8rSfIf85DFDR9bMaDkg02vHe725BUvz/0e7c9RAJhV/aweAd9B/fwoAz33Tym3KU9Okly7uG2k3ted7oNNK8sfAJgp/awe58AD0HLl+iS3yZMb909K9/usvBW8dAcAZpWAB6DNys1Hnz9gZOca6T5whyTJL6Y+dqozAwCYMofQd1A/DyYB+ua3S34uN2/Y+YCSNza9sOYeSYYvR/9n9cd/yGXmAaBV+lk9Ar6D+vlRBnqkXLb4aG7lnvy/Ca9bTPcklw/+8Wf1EdIdANqon9Uj4Duonx9loPteX/L99x96/jfDO9ed7klyQa651p+RANBm/awe58ADMNNun/KJcmOS5P5jB2wo3W9ZP/iF1GubRgMAzDAr8B3Uz++igK7ZXzL/0uSaoU1/MTrib9ZK9wcPP724vvG4o+UBoCv6WT0CvoP6+VEGOqVcnrx7dNOHR/bnnU0vrfm6JMOXo5fuANA9/aweAd9B/fwoA93w5yXfn8uTQ6ObH7UU8OtI9ySPT1LqB2vztegBgFbrZ/UI+A7q50cZaLvPlXx95pMM8nu1ks83vXYo3Qf+feqvTm9qAMDM6Wf1uIgdADusvCb1kXf6+gkDpDsAgIAHYEeUfCi3v/vgcf3knYb2fH502IR0X7oo/Y8k+cs863v69RU8ANA7An7JycNl79yZvsnciXpozxQmA9BlJR/6mXL3tcasJ92T5JF51qtrvmc6UwMAmF0CHoBtVH4wWb4i/Gfz2nNyp5VD1p3ut8g7vlTz6unOEABgVp210xOYHXsOnTqyb6cnAdBV/68s1PuwczKypeT6pnqvuVXNrZKHJA8pX3xH+eI7Ut/xJcfMAwB94ir0KywfSL/vyKljB3bt7Gw2p5/XYwRmUbnp6POHjRv0niQl1ze9R82tFh8+KvXIlGYGALRbP6tHwK+21PBtTfh+fpSBmbOy3peMZHzJ65reYCjdB88/d+aTAgC6oZ/V4xD61ZaOpZ8/eOnR0zs9G4B2KXdOygNTHrj2yLyuqd4XD5hfev459Q4AYAV+vNNH9+8+OJ92Xla+n99FATuvPCJJckOS5J2TBuarTbtq7rj0+E75+Mf9SQYAjNPP6hHwTRYPpN/R4+gHH8rN8V8W2D7l6cmHF59MCnjpDgBMRT8D3iH0TfZcsngc/VUnd3ouADOr1JSnDz2/oXFgvtpU7zek3pD69Hy81MtTP56q3gEAxrAC30H9/C4K2AHlcYuPPrX4YCngl1fgJ666/0CSz+a1Sc7xhxYAsG79rB4B30H9/CgD26qMXh8+37v4YHgF/p3SHQDYIv2sHofQA7ABP1hW13uStyRvGX5e8vameq95+T+nlhtem5943TlVvQMArNfZOz0BAFrjqyWvzS9NHPINJa9t2lfz8nL6R/Ps8nVJPafmpdodAGADHEK/YYt3mNvRy9NP1M+DSYCtVT6f/GFyffLCxiH5QtOumgc8OG97oz+WAIAp6Wf1OIQegElK3rRY7xPGfKGp3mse8KDUVPUOAHCmBDwADV5dSj7/tvKgxefXrx4yId1Tfyj1h6Q7AMC0OAcegFHlqsVHf1Dzx8ljVy+/TzhaPknNf0r9ma2ZHABAfwl4AJLk7iVJPpQfHd38yOSPh5+vle4/kfrSqc8NAIAIeIC+KxcM/vmhheffPrr71UmSByUpef6Et6m5ZfKEsv+FjpcHANgiAh6gl8oVSZJnjW69a/L+5P9v7+5jZDvrw47/Hhtw1ZdUKmoRsJs4hRqQjCgJVbsbOX0JNhhIQWa3yq6K6uAGm1Da2jQuCImddZNQucYmNS120C2pQncb7uI4JQViXopwuNvS0LTNjVQMpCa7vRGJiNoioZoWnv4xO687Z3ZmX2b2OefzkSXPzDkz9+jemTPnO895iaGMT/H3xrxSL90/HOodAODsCHiApkjxvRER//l380tH1ntEfC0iIr6v7ymPVr1ajnf03flZ6Q4AcNYEPEAjPJjin8bvTjz7b6fuPvWHDKX7iRYLAICJpaZd+L4JUkoR4V8WiIiH0sDd/xvx1qgafj+Q4ttVk3L8XN+dv3vShQMAOK5mVo8ReICaSndFxB2dew/F/RHx9PHPGJfu//bz8arPR0TEDzXrixIA4LwQ8AB1k14f+ZG7hh68I+6KTsaPeMq4dH9dxGvS817Vvpxc/sFTW04AAKYi4AGKl34u8t/vrc9zRMSk+7cfle5tz45fku4AAHPmGPgaaubRINBAT3WOb7+m8tfYERn/UNx/RzwQESmGR+m7+tL9JyK/6gTLCABwJppZPUbgAcrzkRSvOcHTx6b7M34qnvqpiH/SrG9DAIACGIGvoWb+FgVNkJ4bEbFzJSJ6AV89/N42MAifDk5BP0KOZ0R+6kTLBwAwK82sHiPwAGVIz4185er+R56K70zx9Op0/4EcX4xmffkBAJRIwAMUIMWH85W1oQeviasPJh7x3OpR94b9aA0AULSr5r0AAIx1T0rx4ZzedoynpvhOVb3nnNU7AEBZHANfQ808GgTq50/1xfffiqvHzXpoED5V711v5QAA1EAzq8cu9ADnToq7c7rmD3sP/MI0z5XuAAD1JOABzoUfSHFf53aOa6Z67lPx/66Jp0l3AIB6E/AA89df78fwR6rPYyfdAQBqQ8ADzFP6ROSbf/0/DTz2a6NmfE7ElRFPj+9WvbJ0BwCoGQEPMAf/MdJfSNdH9F9+/f3Vs996+DB46Q4A0DQuIwcwa916H/TmiDePfd5z2v9L8d2qendxOACAGhPwADP1vZH+ZzpGY98a0h0AoNlcB76GmnlFRChC2o/HFuPGePHYud4/dBh8ip8eM7cPOwDQQM2sHsfAA8xK+uVpv2GkOwAAXQIe4Gz9aIqI+Gj88jRPekWKG8ZMlu4AAA0k4AHO0LdS/NKUT5HuAACM5CR2AGcixX3fSge3/+jw8Ps9FU+5nOLyyEm54xSXEACAshiBBzgl6a8O3M2vnuKpFd0ehtwBAOhwFvoaaub5GGFe0hci/8Whi7r/6e6tb8W/ixEj8G3vCukOAHAszaweI/AAU0vx5MGtL1x7qN4j4g8ioj/jK15EugMAMAUj8DXUzN+i4KylxyMi8g+/Y+DB//DuUQHfdhDwhwfhU9xS9af45AIATKKZ1WMEHuAo6daI6PtyeHb3VnW9R8QfHB6El+4AABybgAcYZSe9YDVHxJfi1kPTfi8i+jN+EtIdAIATEvAAw1Ls59WPfCkeOZVX+2ORqiZJdwAAJuc68AAD0kOR0xc69/5N9Yy/d/RLxWdTfHbkJBd1BwBgWkbgESl3mAAAHD9JREFUASIibowUEZ9MH5uyqn804qOHH03x21VP0O0AAByPgAeI9OnIL399RERc6Dy2fsyXku4AAJwNl5GroWZeUAGO5/ZI3035A7FSMf2Pj3129zx2Hw3pDgAwQ82sHgFfQ818K8MxpHhLTlcGH7t68O569WHwvbPQp/jHVX+ETyIAwFloZvXYhR5ons+lhb+cIyLHlUPTvhMRfRm/NX4QXroDADAzRuBrqJm/RcFE0t8evP+Nivn6x+GHB+Hvzf/y7sjtD9pIPn0AAGetmdUj4GuomW9lGOPeFBFxd7xs8OHFsU/qNnzvbHb35tdLdwCA86CZ1SPga6iZb2UY4Wsprn13585OxUxVGT8Y8PmW6Hy4RvKJAwCYpWZWj2PggRpKPxTxxchPvfvoWY9wW0REvlm6AwAwdwIeKN+VgbpOqzm+ODRH1fB7ROyN25e+ne4V8S7dAQCYJQEPlCptdW/miMh/JUVE+txBVOenKs8PP4GrI++klKJi4F26AwAwewIeKFL6nsH7D0X6bI6I+GdxaPh9+hePj0h3AADOGwEPlOclKXLc3v9IuuPhiIiHTvSyKR4dM1W6AwAwX1fNewEAppB+IV6S4r8M1ntE5G/enr85/GCflepJfz7iPSkeHVPvOWf1DgDA3BmBB8699A+6N3PES+K+yjnviHhx50nXvH2Sw+BTXIi4UDVVtwMAcH4YgQfOt756bzs8/N6Vv3l7vCXiB0dOHB6ET/HFVH24vFF3AADOGwEPnFO3RkpjdoqfQLrm7YMPrET+jci/MSbdc8eJ/mAAADgDyXZq/aSUwq6/FC59MCIiv3F4+D0iIr457onbD0dEPDh8Lvr8fyI6n46RfGQAAArSzOpxDDxwnrwlRUR6WY6I+PfHeYH8wyl9Lsdb+x75sQjpDgBA+QQ8cC6k17T/nyMivhbx+jHz/onKQfj8cMTD7WLvvbJ0BwCgFgQ8MG/pdXEQ7hER6dWPRkR85DReWLoDAFAjjoGvoWYeDUJ50jciIuK20RPbGf/cyD8/8jD4GBqEf07++Su9HwGkOwBAzTWzeozAA7OT4vsj4ivpvz8vvjHRE/5H9Ut98OGIePatKSKuRL4SDx88Lt0BAKgpI/A11Mzfojj/Unx/xNVfSV+JiE7Ajx5+P5i/YhA+vem+/PCo+aU7AEBjNLN6jMADM/PX2v+bdPi9I73pvu7t/HAcXklLdwAAmkDAA7OQtiPiwlfWp3/mX+rdzD9+6GWlOwAAjSHggbO1nCIilo735M7F5KQ7AABcNe8FAGorvfeg3qtdqHzuqx+NiPyplH98uN5TSlX1nnNW7wAA1JWAH2V/ezX1Wd3en/QJm7szWUA4/9J74+N3xrui91/XV+OZRz49/2rkX434VwM1Lt0BAGgyu9AP291My63Bh3bWF9N6tC7ljWPuBQyNk+7uj+mvx72/GfGuiC9H/LnhWS8Mn4s+Pzri9ewwDwBA4wn4ASPqvau1nC5v7V1cW5jlAkFRUlyKiJyGC/xZcfcrOxnf9tV4Zt+56C9EROTRw/LSHQAA2uxC32d/+/7Wwc3Wpdy1t7Vy8OjO+uLRu9NDE6X4/RS/H/H8iOePn/PLnRtfjWe2/4v8zJH1bod5AADoJ+B7di+s70RErGztDewsv7B2sVfxGh4OS7+V09c7/91XNdez4u6XRkTEGyLeEPH8rXh+vu15ozJcugMAwGECvmv/ycsREdG6a9Re8gtrF/OlVkRoeDjw6UifjhTpt47x3N2tiIh86Cz00h0AAKoI+K69J3YiIlo3VZ6pbmlDw8OBT8cRF4gbL69FXht4RLoDAMB4An46Aw3vmnE0VfpMvPwz+eX/KP9I+q/TPvfm/LFLgzEu3QEAYBICfmpLG53j4VvLhuFpoPSZiN2Iz1dNf0PVhPZZ6HO8qvdS0h0AACbmMnJdi9etROxE67HdjaXx13tfWLu4F6uL6zuxs764ea3Lw9Ms+Ud+ZfCBPzv5c1+ZI8ZeGS5cHA4AACoYge9auOGWlYiI1vIEu8YvrD1gGJ7GeVmKSL9y6OHfifidwUeGB+G/HvdGvvdZedyQexh1BwCAsZLN5Z797dXF9pXkYmVr7+Kok9EP2N1My63Bh1qXTnU8fvxA5Xj+ZTktd/a9DR+IwwHfNjwOn/KzcvyZ3l2j7gAAnJ725mXTNiONwPfpDavHzvpiSimNH4vvndEOamuyeo9Dg/AR8Yft/xl1BwCAU+EY+AG9o9sjImLlusUjnrC0kfeu6z3htB0vbE4ybg9tL0rx1yMi4hmdR7498XNTfnqOF+axb0XRDgAA0zICP2xh7WLOnfPMn8kT4Lx7UYqNiJf2/Rd9JV8l3fPidM+LI784xwudXh4AAE6dY+BrqJlHg3CK/nXFwPmPjduFPtI9r42IeJdRdwAAzlwzq8cIPDDgRdVHYPzDeG3VpHTPa+NdqarejboDAMDJCfip7W+vppRScvU46mmjetJLKx5P8TrpDgAAZ03AAwfS5UiXj5hnaBA+xetSvG7knNIdAABOl7PQA3ExRUR8uHP3O2NnvjNeGxHvDce6AwDATAl4aLqLh0r86oioyPhvS3cAAJgTAQ9Mak26AwDA/Ah4aLD0qYhY7dy7GC/vn3h13yC8dAcAgLkT8NBU6VNDD6zGp+JQxkt3AAA4J5yFHprnHenXqrO8629Eqqp3Z5gHAIDZMwIP9ZfiQv/dHPGK9MmqmVfjUylurJqq2wEAYF6SzfH6SSmF0KLjA4OD6G/KFyIip+8bObN0BwCgCM2sHgFfQ818KzPSByr2lP+JGD4AXroDAFCQZlaPXeihZOnKwN38nOO8hnQHAIASOIkdFCm981C9R0S60v9g1fB7RHwgXh4RKW6sqnenqQMAgPNGwEN50jtP+gpviiTdAQCgLHahhyLlnz00/N6VrozZl/5N1ReQ+0SOV4R0BwCAc0rAQ2HSdcd8onQHAICiOQt9DTXzfIwN8b5Og/+dqB6Bj97Z7D6QxnV7ROS3R7zbWwUAgMI0s3qMwEMx3jeuxEdor9SqNG1lBwAApXMSOyhAiptS3NT/yPui+opx+TkppTH17jR1AABQIiPwcN610/3B9NhkMz93zC7zuh0AAMplBB5KNTQIn+K5KZ47cs7cMZPlAgAAzoST2NVQM0/nUFcp/nf7xoPpe6rmeWv1mLu3AQAAtdTM6rELPZxf3XqvIt0BAKA5jMDXUDN/iypeetvA3fyeOBTw/YPw0h0AgCZrZvUYgYdzYKjeu4/kjcPzSncAAGgmAQ/zlOK1EZHj+ZPMLN0BAKDJ7EJfQ83cmaREB/WextV7ag/Cpz9ZNYN/aAAAGqiZ1WMEHuYhfSgicqxGRMRvjp1TugMAABECHuYgfWiiueL+qkn56RHfVu8AANAsAh5OVfrEwN38yuO8RnW6R/5fERFReU14AACgrhwDX0PNPBrkXBiq967+jB89/H6wF/2R6Z6lOwAANLV6jMDDSaWfPLhxkpXHuB3mG7ZWAgAARhLwcCK9en9/xfB7RKRPjNmXPsUbqiZJdwAAoEvAw9xIdwAAYHICHo6vO/w+hfw3I31IugMAANMS8DBT7ZNtjCTdAQCAMa6a9wJAsR4cSPH05uorxuVXRkRKqarec87qHQAAGE/Aw7E8mD741knnle4AAMDJCXg4vn/xz48YhE9xc4qbRz5XugMAAFNJEqJ+2oO9/mVP3ZdjINd/PSIi3viTFX/P73esOwAAnJVmVo+Ar6FmvpXP2lC9Ryfg43DDS3cAADhjzaweAV9DzXwrn7XDAR99DR8Rb6zM9gj/HAAAcKqaWT0uIweV0sP99/ITt49udOkOAADMgBH4Gmrmb1GnbrDee/oz/jrpDgAA89DM6jECD8ch3QEAgBkT8DBC1fB7jE133Q4AAJwdAQ8Tu8Pp5QEAgLkR8DBsJ1LEYJBLdwAAYN4EPIwl3QEAgPPBWehrqJnnYzwtO53rva861h0AAM6rZlaPEXia7UuDmf6CHGPTPR7K+fazXSIAAICRBDwN9qXhUm//jDfaQ/ni7WnlbBcIAACgkoCHiIj0wspJFw/2yhl75XcAAIAzJuBpqs7w+wTpfmAlmnWADQAAcK4IeJpr8nQHAACYOwFPE4051j3/t4iIncEHjb0DAABz5zJyNdTMCypM6Mh0P/ACf3sAAHB+NbN6jMDTFJOme6h3AADgPBLw1N8U6Q4AAHBeCXhq6OZOsH+i+tpv+adHPdo+9v2dp79IAAAAJyTgqZt2vY9L95zjZzpTd6rmAgAAOF+cxK6Gmnk6h65xO8z3/538TMVs72zo3xsAABSkmdVjBJ76GJPur3QdOAAAoHBG4Guogb9FTZjuHx/6KxkahDf2DgAAhWhg9YSAr6VGvZWnGnUfDngAAKBMjaqeLrvQUyo7zAMAAI0i4CnMmG6PiBz3RcTNoyYZfgcAAIp21bwXoDj726up3+r2/rwXqSnaf+FVU3Pc1653AACAWhLwo+xujg703c2UFtcHrxy+s76Y0uburBexWaZN94/HewbuZsPvAABA8ZzEbsj+9upwokesbO1dXItRU3pal/LG0tku26TqdDqHSXaYr5j2ttNfGgAA4HyoU/VMzgj8gN3NkY2+s37n9u7jj3SmtC7lnkutgweX7Ux/qsaMuh/81dthHgAAaBIB32d/+/5W+1Yv0fe2ViIidtaX22W/srU3ONK+tNGJ+J31C/akPw1HpvuMlwcAAOA8EPA9+wdj7AM7wy+sXeyMsUfEytYDawuHn7l0WzvzW48p+BOZLt3H7CRv/3kAAKB2BHzXQb+vbN02dCh7J88jVm65YUS+R8TCDbesRERcftJe9Mdj1B0AAGA8Ad+198RORMT11x5q9E6ej5rWmeXa6yMidp7YO6vFq61xZ5jPN0ceeU337gyHRtrz2wy/AwAAtfS0eS9AERauvT6i+gT0HM+4M8yP7/aBOeU6AADQCEbgh43bC7562v6Tl89mceppqlH3FK+axTIBAACcbwK+a/G69vnmH3n8cKUvbeScc7446gx2EdHd/7510zm5FPy5daId5gEAABpMwHd1jnQ/xtXgdjeXWxERK9ctnvZS1cf409RJdwAAgPEEfM/C2l2tiIhoLae0OWHE726mlJYPnndX5Qj9MaVjOd1lODlnmAcAADg5Ad9vaaN7zffWcjqq4vvbPSJalzbsPz9k8nTP8bGqFxkzCQAAoDkE/KCljdxt+KP2iD84aD4iIlqX8lnkez6W01+O6Rl1BwAAOF0C/pCljZzbFV992fd+rUs5n0m9F+rY6X54pD3Hxwy/AwAAtCVjofXT7ufZ/8uOOfx+9MKkNwzO9IunvUQAAEA9zat65kvA19Ds38pTp3scqvfeE2Q8AABwhGYGvF3op7a/vZpSSml1+/D14pvHse4AAACzIeA5phOle9Xw+/hJAAAADfa0eS8A5TnODvMAAACcjIBnCtIdAABgXgQ8E5HuAAAA8+UYeMZJHSOnHv80dWNONe8s9AAAAKMYgWe0MUPuYdQdAABg5gQ8w2aU7vkXh084b+wdAACgmoCnZ9aj7oodAABgYsm+0PXT7vCp/mWdow4AACjIMaqnBozAN510BwAAKIKAby7pDgAAUBAB30TSHQAAoDgCvlmkOwAAQKEEfFNIdwAAgKIJ+PqbUbrfOPinfNKPAgAAAKfJZeRqqHtBhdmNut9Y8QfJeAAA4Ay4jBy1UlXvTXuLAwAA1MNV814AZifnfCb1XjX8Pn4SAAAA0zAC3whG3QEAAEon4GtOugMAANSDgK8t6Q4AAFAnjoHnxMacat5Z6AEAAE6JgAcAAIACuA58Dc3niohDJ5w39g4AAJyZZl4HXsDXUDPfygAAQHM0s3rsQg8AAAAFEPAAAABQAAEPAAAABRDwAAAAUAABDwAAAAUQ8AAAAFAAAQ8AAAAFEPAAAABQAAEPAAAABRDwAAAAUAABDwAAAAUQ8AAAAFAAAQ8AAAAFEPAAAABQAAEPAAAABRDwAAAAUICnzXsBOCsppXkvAgAAAKfGCDwAAAAUIOWc570M1Fx7XwDvNLwTaPNOoMubgTbvBNq8E2jzThjDCDwAAAAUQMADAABAAQQ8AAAAFEDAAwAAQAEEPAAAABRAwAMAAEABBDwAAAAUQMADAABAAQQ8AAAAFEDAAwAAQAEEPAAAABRAwAMAAEABBDwAAAAUQMADAABAAQQ8AAAAFEDAAwAAQAEEPAAAABRAwAMAAEABUs553ssAAAAAHMEIPAAAABRAwAMAAEABBDwAAAAUQMADAABAAQQ8AAAAFEDAAwAAQAEEPAAAABRAwAMAAEABBDwAAAAUQMADAABAAQQ8AAAAFEDAAwAAQAEEPAAAABRAwAMAAEABBDwAAAAUQMADAABAAQQ8AAAAFEDAAwAAQAEEPAAAABRAwAMAAEABBDwAAAAUQMADAABAAQQ8AAAAFEDAAwAAQAEEPAAAABRAwAMAAEABBDyzsr+9mgasbu/Pe5mYh0PvBO8FInY3U0ppc3fey8GstP/FrQXoZz3QYLYNaNMLExDwzMD+9mpKi+s7g4/urC/6om6Y3c004p3gvdB4+9ury615LwQzs7uZUhr+F99ZX7Sd1mzWA41l24A2vTApAc9Z299eHbFW7mot+0w2xO7moU32Qd4LDbW7OW4VQc2MrbSd9UUrgYayHmgq2wa06YUpCHjO1v72nd1P48rWXu651OrM07rfoEv97W/f3+rcHnwn9L0VorVs9dws+9urR2y7UStVXwl9XwhWAs1jPdBctg1o0wtTEfCcqf3HH2l/HFe29vLFtYW+SUsb3c/kziOP+0TW3O6Fzoq5dWnonRBLG3lva+XgTusx39JNsb+9OmqnSWqsckXQvxawjdYo1gONZtuANr0wHQHPWep+Hlt3Da6W25ZuO1g17zyxN8vFYuZ2H2u1b7QubSyNmL6w9kB34923dAMMHvHY2upupFFrY1cEvbWAbbSGsB5oPNsGtOmFKQl4ztLC2sX2/i8jV8wRe0/41b0R9p+83L6xct1ixSwL114/s8Vhzvr3mWxdynnjhjkuDLPTXRG0bhr5lbBwwy0KvjmsB7BtwAG9MKWnzXsBaLLeT6+jt+aoi4W1i3ltwnmrv8epmdalqq9qaqm3i2TVh3zhhltWYmfnYJRlxDAM9WM90GC2DZiMXhgm4JmP/nNNVuw5RaN01s4rt9xgs73uptloo4auv/bID/nlJ/djyaqg1qwHmIBtg6bTCyPZhZ6Z2t1MbX2fRj++09uX0nc01NUE+0DaXRbosW3QWHphPAEPzFv34iErWw+MOnsJUCN2hQUmYNsAKgh4Zql7vpKe1nJKq64Z1GC9vaNaly76igbCqYah6WwbNJpeOIKAZ5a6Z5ls617XcX1x0+VBGml3M3W/oe0bBRwwSg8NZtug6fTCEQQ8x9Y9PuWwCX8iW9rofiZb9/tVrVjHfSfsbqblVkT4hq6Lk68TAGg22wYM0wvDBDzztXTbluv+NtHuZjr4hl7Z2vMNDQ2weN3B2r569/gRu00CzWHbgAp6YYCAZ86cdLh59rdX+35ed2wbNEN3bX/5ySM3vya40hxQK7YNGEcv9HMdeI5taSPnjXkvBOfANO+Evgt6rmzt+YKuF+sExlq8biVi52AIftRnf//xRw7WDg6BhyaxbQDTMALPGdrfXj3y+Nfdx1rtGwZc6q/3Db2ytefndWiY7gBK67GRpyHq9btrPkNz2DZoPL0wLQHPGVq44ZaDA1bWL4w+a+T+9v2t9q3WTQ51qrndzd43tC9oaKClm1rtG63lw2cS7l7zWb9Dg9g2QC9MTcBzlrqfyGgtp+Httf3t1dTbY+o2n8da299e7R7a5hsaGqp7GqJoLQ8MtfSuGhXRussqAprBtgERoRemJuA5UwtrD3Q216K1PHhdqe7WmtV2/e1e6P1rD70PDnGNT6it/u+EnfXF7sf+YBs+IlqXnHkaGsK2AQf0wnQEPGdsYe1i9+KNI7nMZ/319nwCGm5h7WL1V8LK1p7vA2gI2wb00QvTEPDMwNJGznmv+9Nax8rWXs4+jQ2w98TO0TMBDbG0kfOhDbWVrb3s9FXQILYNGKIXJpVyzvNeBgAAAOAIRuABAACgAAIeAAAACiDgAQAAoAACHgAAAAog4AEAAKAAAh4AAAAKIOABAACgAAIeAAAACiDgAQAAoAACHgAAAAog4AEAAKAAAh4AAAAKIOABAACgAAIeAAAACiDgAQAAoAACHgAAAAog4AEAAKAAAh4AAAAKIOABAACgAAIeAAAACiDgAQAAoAACHgAAAAog4AEAAKAAAh4AAAAKIOABAACgAAIeAAAACiDgAQAAoAACHgAAAAog4AEAAKAAAh4AAAAKIOABAACgAAIeAAAACiDgAQAAoAACHgAAAAog4AEAAKAAAh4AAAAKIOABAACgAAIeAAAACiDgAQAAoAACHgAAAAog4AEAAKAAAh4AAAAKIOABAACgAAIeAAAACiDgAQAAoAACHgAAAAog4AEAAKAAAh4AAAAKIOABAACgAAIeAAAACiDgAQAAoAACHgAAAAog4AEAAKAAAh4AOFO7mymllNLq9v68FwUAiibgAQAAoAACHgAAAAog4AEAAKAAAh4AAAAKIOABAACgAAIeADjCwXnk26eR75xUftSZ5Qempc3dOS0vANSTgAcAJra7mZZbI6fsb6+moWmtZZeOA4BTJOABgAk9cudQvbfuWluIiNjfXl1c3xnxjJ31xc3HZrBkANAEAh4AmMzOzk5ErGzt5Y6NpYiI2L3Qrff+qZdaERGtVmsuSwsAtSPgAYCJrWztXWwPuvfsb9/fGjl1aSPvba3MbuEAoOYEPAAwqZVbblgYfmz/8Ufaw+8rWw8Mt30srD0g4QHglAh4AGBS1197qN9j74md6okRCzfcouAB4FQIeABgQivXLU4/ceHa689ocQCgYQQ8AHAC+09envciAEBDCHgA4AQMsAPArAh4AOA07DyxN/JxQ/QAcEoEPABwEovXHZykrvXY7ojJ3ZPUAwAnJOABgJPonWa+df/2/vDU3Qvr+h0AToeABwBOZGHtrlb71s76YtrsDcPvb6+m5dZclgkA6kjAAwAntLRxqdW53VpOHYvrOxErW1ut6mcCAJMT8ADAiS1t5F7D91nZemDt2hkvCwDUlYAHAE7D0kbOe1srfY+0LuWLawtzWyAAqJuUc573MgAAAABHMAIPAAAABRDwAAAAUAABDwAAAAUQ8AAAAFAAAQ8AAAAFEPAAAABQAAEPAAAABRDwAAAAUAABDwAAAAUQ8AAAAFAAAQ8AAAAFEPAAAABQAAEPAAAABRDwAAAAUAABDwAAAAUQ8AAAAFAAAQ8AAAAFEPAAAABQAAEPAAAABRDwAAAAUAABDwAAAAUQ8AAAAFAAAQ8AAAAFEPAAAABQAAEPAAAABRDwAAAAUAABDwAAAAUQ8AAAAFAAAQ8AAAAFEPAAAABQAAEPAAAABRDwAAAAUAABDwAAAAUQ8AAAAFAAAQ8AAAAFEPAAAABQAAEPAAAABRDwAAAAUAABDwAAAAUQ8AAAAFAAAQ8AAAAFEPAAAABQAAEPAAAABRDwAAAAUAABDwAAAAUQ8AAAAFAAAQ8AAAAFEPAAAABQgP8PcCwsANPg+nsAAAAASUVORK5CYII=" title alt width="672" />
可见,通过QQ图可以看出,样本值越大,随机数的分布状态越近似于正态分布。
反馈与建议
- 作者:ShangFR
- 邮箱:shangfr@foxmail.com