【转】后缀自动机

时间限制:10000ms 单点时限:1000ms 内存限制:256MB

描述

小Hi:今天我们来学习一个强大的字符串处理工具:后缀自动机(Suffix Automaton,简称SAM)。对于一个字符串S,它对应的后缀自动机是一个最小的确定有限状态自动机(DFA),接受且只接受S的后缀。

小Hi:比如对于字符串S="aabbabd",它的后缀自动机是:

【转】后缀自动机

其中红色状态是终结状态。你可以发现对于S的后缀,我们都可以从S出发沿着字符标示的路径(蓝色实线)转移,最终到达终结状态。例如"bd"对应的路径是S59,"abd"对应的路径是S189,"abbabd"对应的路径是S184679。而对于不是S后缀的字符串,你会发现从S出发,最后会到达非终结状态或者“无路可走”。特别的,对于S的子串,最终会到达一个合法状态。例如"abba"路径是S1846,"bbab"路径是S5467。而对于其他不是S子串的字符串,最终会“无路可走”。 例如"aba"对应S18X,"aaba"对应S123X。(X表示没有转移匹配该字符)

小Ho:好像很厉害的样子!对于任意字符串都能构造出一个SAM吗?另外图中那些绿色虚线是什么?

小Hi:是的,任意字符串都能构造出一个SAM。我们知道SAM本质上是一个DFA,DFA可以用一个五元组 <字符集,状态集,转移函数、起始状态、终结状态集>来表示。下面我们将依次介绍对于一个给定的字符串S如何确定它对应的 状态集 和 转移函数 。至于那些绿色虚线虽然不是DFA的一部分,却是SAM的重要部分,有了这些链接SAM是如虎添翼,我们后面再细讲。

SAM的States

小Hi:这一节我们将介绍给定一个字符串S,如何确定S对应的SAM有哪些状态。首先我们先介绍一个概念 子串的结束位置集合 endpos。对于S的一个子串s,endpos(s) = s在S中所有出现的结束位置集合。还是以S="aabbabd"为例,endpos("ab") = {3, 6},因为"ab"一共出现了2次,结束位置分别是3和6。同理endpos("a") = {1, 2, 5}, endpos("abba") = {5}。

小Hi:我们把S的所有子串的endpos都求出来。如果两个子串的endpos相等,就把这两个子串归为一类。最终这些endpos的等价类就构成的SAM的状态集合。例如对于S="aabbabd":

状态 子串 endpos
S 空串 {0,1,2,3,4,5,6}
1 a {1,2,5}
2 aa {2}
3 aab {3}
4 aabb,abb,bb {4}
5 b {3,4,6}
6 aabba,abba,bba,ba {5}
7 aabbab,abbab,bbab,bab {6}
8 ab {3,6}
9 aabbabd,abbabd,bbabd,babd,abd,bd,d {7}

小Ho:这些状态恰好就是上面SAM图中的状态。

小Hi:没错。此外,这些状态还有一些美妙的性质,且等我一一道来。首先对于S的两个子串s1和s2,不妨设length(s1) <= length(s2),那么 s1是s2的后缀当且仅当endpos(s1) ⊇ endpos(s2),s1不是s2的后缀当且仅当endpos(s1) ∩ endpos(s2) = ∅。

小Ho:我验证一下啊... 比如"ab"是"aabbab"的后缀,而endpos("ab")={3,6},endpos("aabbab")={6},是成立的。"b"是"ab"的后缀,endpos("b")={3,4,6}, endpos("ab")={3,6}也是成立的。"ab"不是"abb"的后缀,endpos("ab")={3,6},endpos("abb")={4},两者没有交集也是成立的。怎么证明呢?

小Hi:证明还是比较直观的。首先证明s1是s2的后缀=>endpos(s1) ⊇ endpos(s2):既然s1是s2后缀,所以每次s2出现时s1以必然伴随出现,所以有endpos(s1) ⊇ endpos(s2)。再证明endpos(s1) ⊇ endpos(s2)=>s1是s2的后缀:我们知道对于S的子串s2,endpos(s2)不会是空集,所以endpos(s1) ⊇ endpos(s2)=>存在结束位置x使得s1结束于x,并且s2也结束于x,又length(s1) <= length(s2),所以s1是s2的后缀。综上我们可知s1是s2的后缀当且仅当endpos(s1) ⊇ endpos(s2)。s1不是s2的后缀当且仅当endpos(s1) ∩ endpos(s2) = ∅是一个简单的推论,不再赘述。

小Ho:我好像对SAM的状态有一些认识了!我刚才看上面的表格就觉得SAM的一个状态里包含的子串好像有规律。考虑到SAM中的一个状态包含的子串都具有相同的endpos,那它们应该都互为后缀?

小Hi:你观察力还挺敏锐的。下面我们就来讲讲一个状态包含的子串究竟有什么关系。上文提到我们把S的所有子串按endpos分类,每一类就代表一个状态,所以我们可以认为一个状态包含了若干个子串。我们用substrings(st)表示状态st中包含的所有子串的集合,longest(st)表示st包含的最长的子串,shortest(st)表示st包含的最短的子串。例如对于状态7,substring(7)={aabbab,abbab,bbab,bab},longest(7)=aabbab,shortest(7)=bab。

小Hi:对于一个状态st,以及任意s∈substrings(st),都有s是longest(st)的后缀。证明比较容易,因为endpos(s)=endpos(longest(st)),所以endpos(s) ⊇ endpos(longest(st)),根据我们刚才证明的结论有s是longest(st)的后缀。

小Hi:此外,对于一个状态st,以及任意的longest(st)的后缀s,如果s的长度满足:length(shortest(st)) <= length(s) <= length(longsest(st)),那么s∈substrings(st)。 证明也是比较容易,因为:length(shortest(st)) <= length(s) <= length(longsest(st)),所以endpos(shortest(st)) ⊇ endpos(s) ⊇ endpos(longest(st)), 又endpos(shortest(st)) = endpos(longest(st)),所以endpos(shortest(st)) = endpos(s) = endpos(longest(st)),所以s∈substrings(st)。

小Ho:这么说来,substrings(st)包含的是longest(st)的一系列连续后缀?

小Hi:没错。比如你看状态7中包含的就是aabbab的长度分别是6,5,4,3的后缀;状态6包含的是aabba的长度分别是5,4,3,2的后缀。

SAM的Suffix Links

小Hi:前面我们讲到substrings(st)包含的是longest(st)的一系列连续后缀。这连续的后缀在某个地方会“断掉”。比如状态7,包含的子串依次是aabbab,abbab,bbab,bab。按照连续的规律下一个子串应该是"ab",但是"ab"没在状态7里,你能想到这是为什么么?

小Ho:aabbab,abbab,bbab,bab的endpos都是{6},下一个"ab"当然也在结束位置6出现过,但是"ab"还在结束位置3出现过,所以"ab"比aabbab,abbab,bbab,bab出现次数更多,于是就被分配到一个新的状态中了。

小Hi:没错,当longest(st)的某个后缀s在新的位置出现时,就会“断掉”,s会属于新的状态。比如上例中"ab"就属于状态8,endpos("ab"}={3,6}。当我们进一步考虑"ab"的下一个后缀"b"时,也会遇到相同的情况:"b"还在新的位置4出现过,所以endpos("b")={3,4,6},b属于状态5。在接下去处理"b"的后缀我们会遇到空串,endpos("")={0,1,2,3,4,5,6},状态是起始状态S。

小Hi:于是我们可以发现一条状态序列:7->8->5->S。这个序列的意义是longest(7)即aabbab的后缀依次在状态7、8、5、S中。我们用Suffix Link这一串状态链接起来,这条link就是上图中的绿色虚线。

小Ho:原来如此。

小Hi:Suffix Links后面会有妙用,我们暂且按下不表。

SAM的Transition Function

小Hi:最后我们来介绍SAM的转移函数。对于一个状态st,我们首先找到从它开始下一个遇到的字符可能是哪些。我们将st遇到的下一个字符集合记作next(st),有next(st) = {S[i+1] | i ∈ endpos(st)}。例如next(S)={S[1], S[2], S[3], S[4], S[5], S[6], S[7]}={a, b, d},next(8)={S[4], S[7]}={b, d}。

小Hi:对于一个状态st来说和一个next(st)中的字符c,你会发现substrings(st)中的所有子串后面接上一个字符c之后,新的子串仍然都属于同一个状态。比如对于状态4,next(4)={a},aabb,abb,bb后面接上字符a得到aabba,abba,bba,这些子串都属于状态6。

小Hi:所以我们对于一个状态st和一个字符c∈next(st),可以定义转移函数trans(st, c) = x | longest(st) + c ∈ substrings(x) 。换句话说,我们在longest(st)(随便哪个子串都会得到相同的结果)后面接上一个字符c得到一个新的子串s,找到包含s的状态x,那么trans(st, c)就等于x。

小Ho:吼~ 终于把SAM中各个部分搞明白了。

小Hi:SAM的构造有时空复杂度均为O(length(S))的算法,我们将在后面介绍。这一期你可以先用暴力算法依照定义构造SAM,先对SAM有个直观认识再说。

小Ho:没问题,暴力算法我最拿手了。我先写程序去了。

--------------------------------------

小Hi:本周的题目其实就是给定一个字符串S,要求出S的所有不同子串的数目。小Ho你知道如何快速求解么?

小Ho:我们最近在讨论后缀自动机,所以肯定是和后缀自动机有关!根据上周学习的SAM的基本概念和性质,SAM的每个状态st都包含了一部分S的子串,记作substrings(st),并且(1)对于两个不同状态u和v,包含的子串substrings(u) ∩ substrings(v) = ∅; (2)每个子串都恰好被一个状态包含。所以我们只要构造出来S对应的SAM,再对所有状态st求Σ(maxlen(st)-minlen(st))就是子串的数目。

小Hi:没错。上周我们提到SAM有O(length(S))的构造法。这周我们就来讲一讲如何构造。

小Hi:首先,为了实现O(length(S))的构造,我们对于每个状态不能保存太多数据。例如substring(st)肯定是没法保存下来了。对于状态st我们只保存如下数据:

数据 含义
maxlen[st] st包含的最长子串的长度
minlen[st] st包含的最短字串的长度
trans[st][] st的转移函数
slink[st] st的Suffix Link

小Hi:其次,我们用增量法构造S对应的SAM。我们从初始状态开始,每次添加一个字符S[1], S[2], ... S[N],依次构造可以识别S[1], S[1..2], S[1..3], ... S[1..N]=S的SAM。

小Hi:假设我们已经构造好了S[1..i]的SAM。这时我们要添加字符S[i+1],于是我们新增了i+1个S[i+1]的后缀要识别:S[1..i+1], S[2..i+1], ... S[i..i+1], S[i+1]。 考虑到这些新增状态分别是从S[1..i], S[2..i], S[3..i], ... , S[i], ""(空串)通过字符S[i+1]转移过来的,所以我们还要对S[1..i], S[2..i], S[3..i], ... , S[i], ""(空串)对应的状态们增加相应的转移。

小Hi:我们假设S[1..i]对应的状态是u,等价于S[1..i]∈ substrings(u)。根据上周的讨论我们知道S[1..i], S[2..i], S[3..i], ... , S[i], ""(空串)对应的状态们恰好就是从u到初始状态S的由Suffix Link连接起来路径上的所有状态,不妨称这条路径(上所有状态集合)是suffix-path(u->S)。

小Hi:显然至少S[1..i+1]这个子串不能被以前的SAM识别,所以我们至少需要添加一个状态z,z至少包含S[1..i+1]这个子串。

小Hi:首先考虑一种最简单的情况:对于suffix-path(u->S)的任意状态v,都有trans[v][S[i+1]]=NULL。这时我们只要令trans[v][S[i+1]]=z,并且令slink[st]=S即可。

小Hi:例如我们已经得到"aa"的SAM,现在希望构造"aab"的SAM。如下图所示:

【转】后缀自动机

小Hi:此时u=2,z=3,suffix-path(u->S)是桔色状态组成的路径2-1-S。并且这3个状态都没有对应字符b的转移。所以我们只要添加红色转移trans[2][b]=trans[1][b]=trans[S][b]=z即可。当然也不要忘了slink[3]=S。

小Ho:那要是suffix-path(u->S)上有一个节点v,使得trans[v][S[i+1]]!=NULL怎么办?

小Hi:好问题。我们以下图为例,假设我们已经构造"aabb"的SAM如图,现在我们要增加一个字符a构造"aabba"的SAM。

【转】后缀自动机

小Hi:这时u=4,z=6,suffix-path(u->S)是桔色状态组成的路径4-5-S。对于状态4和状态5,由于它们都没有对应字符a的转移,所以我们只要添加红色转移trans[4][a]=trans[5][a]=z=6即可。面对S时我们遇到了小Ho你提出的问题,trans[S][a]=1已经存在,怎么办?

小Ho:怎么办呢?

小Hi:不失一般性,我们可以认为在suffix-path(u->S)遇到的第一个状态v满足trans[v][S[i+1]]=x。这时我们需要讨论x包含的子串的情况。如果x中包含的最长子串就是v中包含的最长子串接上字符S[i+1],等价于maxlen(v)+1=maxlen(x),比如在上面的例子里,v=S, x=1,longest(v)是空串,longest(1)="a"就是longest(v)+'a'。这种情况比较简单,我们只要增加slink[z]=x即可。

小Hi:如果x中包含的最长子串 不是 v中包含的最长子串接上字符S[i+1],等价于maxlen(v)+1 < maxlen(x),这种情况最为复杂,不失一般性,我们用下图表示这种情况,这时增加的字符是c,状态是z。

【转】后缀自动机

小Hi:在suffix-path(u->S)这条路径上,从u开始有一部分连续的状态满足trans[u..][c]=NULL,对于这部分状态我们只需增加trans[u..][c]=z。紧接着有一部分连续的状态v..w满足trans[v..w][c]=x,并且longest(v)+c不等于longest(x)。这时我们需要从x拆分出新的状态y,并且把原来x中长度小于等于longest(v)+c的子串分给y,其余字串留给x。同时令trans[v..w][c]=y,slink[y]=slink[x], slink[x]=slink[z]=y。

小Ho:好像比较复杂。

小Hi:我们来举个例子。假设我们已经构造"aab"的SAM如图,现在我们要增加一个字符b构造"aabb"的SAM。

【转】后缀自动机

小Hi:当我们处理在suffix-path(u->S)上的状态S时,遇到trans[S][b]=3。并且longest(3)="aab",longest(S)+'b'="b",两者不相等。其实不相等意味增加了新字符后endpos("aab")已经不等于endpos("b"),势必这两个子串不能同属一个状态3。这时我们就要从3中新拆分出一个状态5,把"b"及其后缀分给5,其余的子串留给3。同时令trans[S][b]=5, slink[5]=slink[3]=S, slink[3]=slink[4]=5。

小Hi:整个过程的代码如下,其中状态0代表初始状态S;状态u, v, x, y, z的意义如上文所述;-1代表slink或者trans不存在。

const int MAXL = 1000000;
string s;
int n = 0, len, st;
int maxlen[2 * MAXL + 10], minlen[2 * MAXL + 10], trans[2 * MAXL + 10][26], slink[2 * MAXL + 10];
int new_state(int _maxlen, int _minlen, int* _trans, int _slink) {
        maxlen[n] = _maxlen;
        minlen[n] = _minlen;
        for(int i = 0; i < 26; i++) {
                if(_trans == NULL)
                        trans[n][i] = -1;
                else
                        trans[n][i] = _trans[i];
        }
        slink[n] = _slink;
        return n++;
}
int add_char(char ch, int u) {
        int c = ch - 'a';
        int z = new_state(maxlen[u] + 1, -1, NULL, -1);
        int v = u;
        while(v != -1 && trans[v][c] == -1) {
                trans[v][c] = z;
                v = slink[v];
        }
        if(v == -1) { //最简单的情况,suffix-path(u->S)上都没有对应字符ch的转移
                minlen[z] = 1;
                slink[z] = 0;
                return z;
        }
        int x = trans[v][c];
        if(maxlen[v] + 1 == maxlen[x]) { //较简单的情况,不用拆分x
                minlen[z] = maxlen[x] + 1;
                slink[z] = x;
                return z;
        }
        int y = new_state(maxlen[v] + 1, -1, trans[x], slink[x]); //最复杂的情况,拆分x
        slink[y] = slink[x];
        minlen[x] = maxlen[y] + 1;
        slink[x] = y;
        minlen[z] = maxlen[y] + 1;
        slink[z] = y;
        int w = v;
        while(w != -1 && trans[w][c] == x) {
                trans[w][c] = y;
                w = slink[w];
        }
        minlen[y] = maxlen[slink[y]] + 1;
        return z;
}

小Ho:咦?程序倒是意外的简单。

上一篇:后缀自动机SAM 学习笔记


下一篇:《YOLOV4&5原理与源代码解析之六:注意力机制SAM》