我有一个代码,使用函数avroToRowConverter()将我的avro记录转换为Row
directKafkaStream.foreachRDD(rdd -> {
JavaRDD<Row> newRDD= rdd.map(x->{
Injection<GenericRecord, byte[]> recordInjection = GenericAvroCodecs.toBinary(SchemaRegstryClient.getLatestSchema("poc2"));
return avroToRowConverter(recordInjection.invert(x._2).get());
});
此函数不适用于嵌套模式(TYPE = UNION).
private static Row avroToRowConverter(GenericRecord avroRecord) {
if (null == avroRecord) {
return null;
}
//GenericData
Object[] objectArray = new Object[avroRecord.getSchema().getFields().size()];
StructType structType = (StructType) SchemaConverters.toSqlType(avroRecord.getSchema()).dataType();
for (Schema.Field field : avroRecord.getSchema().getFields()) {
if(field.schema().getType().toString().equalsIgnoreCase("STRING") || field.schema().getType().toString().equalsIgnoreCase("ENUM")){
objectArray[field.pos()] = ""+avroRecord.get(field.pos());
}else {
objectArray[field.pos()] = avroRecord.get(field.pos());
}
}
return new GenericRowWithSchema(objectArray, structType);
}
任何人都可以建议我如何将复杂的架构转换为ROW?
解决方法:
有SchemaConverters.createConverterToSQL但不幸的是它是私有的.
有PR公开,但它们从未被合并:
> https://github.com/databricks/spark-avro/pull/89
> https://github.com/databricks/spark-avro/pull/132
我们使用了一个解决方法.
您可以通过在com.databricks.spark.avro包中创建一个类来公开它:
package com.databricks.spark.avro
import org.apache.avro.Schema
import org.apache.avro.generic.GenericRecord
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.DataType
object MySchemaConversions {
def createConverterToSQL(avroSchema: Schema, sparkSchema: DataType): (GenericRecord) => Row =
SchemaConverters.createConverterToSQL(avroSchema, sparkSchema).asInstanceOf[(GenericRecord) => Row]
}
然后你可以在你的代码中使用它,如下所示:
final DataType myAvroType = SchemaConverters.toSqlType(MyAvroRecord.getClassSchema()).dataType();
final Function1<GenericRecord, Row> myAvroRecordConverter =
MySchemaConversions.createConverterToSQL(MyAvroRecord.getClassSchema(), myAvroType);
Row[] convertAvroRecordsToRows(List<GenericRecord> records) {
return records.stream().map(myAvroRecordConverter::apply).toArray(Row[]::new);
}
对于一条记录,您可以像这样调用它:
final Row row = myAvroRecordConverter.apply(record);