# # kNN 分类算法
a = np.array([[1,1],[1.2,1.5],[0.3,0.4],[0.2,0.5]]) #构造样本数据
labels = ['A','A','B','B']
# print(a.shape[0]) # 行数 shape(1)表示列数
diffMat = np.tile (np.array([[1.5,1.2]]),(a.shape[0],1)) - a #tile(被重复数据,(重复几行,每行重复几次))
# diffMat
# [[ 0.5 0.2]
# [ 0.3 -0.3]
# [ 1.2 0.8]
# [ 1.3 0.7]]
a = diffMat ** 2
# a
# [[0.25 0.04]
# [0.09 0.09]
# [1.44 0.64]
# [1.69 0.49]]
distence = a.sum(axis=1) # 1表示行 0表示列
# distence
# [0.29 0.18 2.08 2.18]
dis_sort = distence.argsort()
# dis_sort
# [1 0 2 3]
k = 3
classcount = {}
for i in range(0,len(dis_sort)):
if i>=k:
break
if dis_sort[i] <= k + 1:
classcount[labels[i]] = classcount.get(labels[i],0)+1
# classcount
# {'A': 2, 'B': 1}