\(Description\)
给定一个\(n\times m\)的\(01\)矩阵,你可以选择一些行和一些列并将其中所有的\(01\)反转。求操作后最少剩下多少个\(1\)。
\(n\leq20,m\leq10^5\)。
\(Solution\)
\(n\)这么小,要想到一是可以状压状态,二是可以枚举选了哪些行。
发现在确定了选哪些行之后,每一列的选择是确定的(取变与不变后得到的状态中\(1\)较少的那个)。
那么假设\(y\)为这一列的最终状态(可以状压表示出来),则这一列的答案为\(B[y]=\min(y中0的个数,y中1的个数)\)(\(B[y]\)可以预处理得到)。而使列的状态由\(x\)变为\(y\),所需要反转的行为\(x\ \mathbb{xor}\ y\)。
状态相同的列显然可以合并。不妨令\(A[x]\)表示状态为\(x\)的列的个数。
那么假设最终选择反转的行为\(s\),则\(ans_s=\sum_{x\ \mathbb{xor}\ y=s}A[x]\times B[y]\)。
异或卷积,\(FWT\)就行了。
复杂度\(O(2^n\log 2^n)=O(2^nn)\)。
另外运算时显然不会爆int。\(FWT\)时会爆int,但是开longlong就行了不需要取模。
//124ms 16900KB
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define MAXIN 50000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=(1<<20)+5;
int col[100005];
LL A[N],B[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void FWT(LL *a,int lim,int opt)
{
for(int i=2; i<=lim; i<<=1)
for(int j=0,mid=i>>1; j<lim; j+=i)
for(int k=j; k<j+mid; ++k)
{
LL x=a[k], y=a[k+mid];//LL!
a[k]=x+y, a[k+mid]=x-y;
if(opt==-1) a[k]>>=1, a[k+mid]>>=1;//这个还可以最后ans>>n。。
}
}
int main()
{
int n=read(),m=read(),lim=1<<n;
for(int i=0; i<n; ++i)
{
register char c=gc(); while(!isdigit(c)) c=gc();
col[0]|=c-'0'<<i;
for(int j=1; j<m; ++j) col[j]|=gc()-'0'<<i;
}
for(int i=0; i<m; ++i) ++A[col[i]];//cnt
for(int i=1; i<lim; ++i) B[i]=B[i>>1]+(i&1);//bitcount
for(int i=1; i<lim; ++i) B[i]=std::min(B[i],n-B[i]);
FWT(A,lim,1), FWT(B,lim,1);
for(int i=0; i<lim; ++i) A[i]*=B[i];
FWT(A,lim,-1);
int ans=n*m;
for(int i=0; i<lim; ++i) ans=std::min(ans,(int)A[i]);
printf("%d\n",ans);
return 0;
}