http://poj.org/problem?id=1556
首先路径的每条线段一定是端点之间的连线。证明?这是个坑...反正我是随便画了一下图然后就写了..
然后re是什么节奏?我记得我开够了啊...然后再开大点才a...好囧啊.
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } const double eps=1e-6;
int dcmp(double x) { return abs(x)<eps?0:(x<0?-1:1); }
struct ipoint { double x, y; };
double icross(ipoint &a, ipoint &b, ipoint &c) {
static double x1, x2, y1, y2;
x1=a.x-c.x; y1=a.y-c.y;
x2=b.x-c.x; y2=b.y-c.y;
return x1*y2-x2*y1;
}
int ijiao(ipoint &p1, ipoint &p2, ipoint &q1, ipoint &q2) {
return (dcmp(icross(p1, q1, q2))^dcmp(icross(p2, q1, q2)))==-2 &&
(dcmp(icross(q1, p1, p2))^dcmp(icross(q2, p1, p2)))==-2;
} const int N=1000;
struct dat { int next, to; double w; }e[N<<2];
int ihead[N], cnt;
void add(int u, int v, double w) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].w=w;
}
double spfa(int s, int t, int n) {
static double d[N];
static int q[N], front, tail, u, v;
static bool vis[N];
front=tail=0;
for1(i, 0, n) vis[i]=0, d[i]=1e99;
d[s]=0; q[tail++]=s; vis[s]=1;
while(front!=tail) {
u=q[front++]; if(front==N) front=0; vis[u]=0;
rdm(u, i) if(d[v=e[i].to]+eps>d[u]+e[i].w) {
d[v]=d[u]+e[i].w;
if(!vis[v]) {
vis[v]=1;
if(d[v]<d[q[front]]+eps) {
--front; if(front<0) front+=N;
q[front]=v;
}
else { q[tail++]=v; if(tail==N) tail=0; }
}
}
}
return d[t];
} ipoint p[N], line[N*3][2];
int n, pn, ln; bool check(ipoint &x, ipoint &y) {
for1(i, 1, ln) if(ijiao(x, y, line[i][0], line[i][1])) return false;
return true;
}
double sqr(double x) { return x*x; }
double dis(ipoint &x, ipoint &y) { return sqrt(sqr(x.x-y.x)+sqr(x.y-y.y)); } int main() {
while(read(n), n!=-1) {
ln=0; pn=0;
++pn; p[pn].x=0; p[pn].y=5;
++pn; p[pn].x=10; p[pn].y=5;
static double rx, ry[4];
while(n--) {
scanf("%lf", &rx);
rep(k, 4) scanf("%lf", &ry[k]);
++ln; line[ln][0]=(ipoint){rx, 0}; line[ln][1]=(ipoint){rx, ry[0]};
++ln; line[ln][0]=(ipoint){rx, ry[1]}; line[ln][1]=(ipoint){rx, ry[2]};
++ln; line[ln][0]=(ipoint){rx, ry[3]}; line[ln][1]=(ipoint){rx, 10};
rep(k, 4) ++pn, p[pn].x=rx, p[pn].y=ry[k];
}
for1(i, 1, pn) for1(j, 1, pn) if(i!=j && check(p[i], p[j])) add(i, j, dis(p[i], p[j]));
printf("%.2f\n", spfa(1, 2, pn)); memset(ihead, 0, sizeof(int)*(pn+1));
cnt=0;
}
return 0;
}
Description
Input
2
4 2 7 8 9
7 3 4.5 6 7
The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.
Output
Sample Input
1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1
Sample Output
10.00
10.06
Source