import numpy as np
import matplotlib.pyplot as plt
import h5py
from lr_utils import load_dataset
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset(
)
m_train = train_set_y.shape[1] #训练集里图片的数量。
m_test = test_set_y.shape[1] #测试集里图片的数量。
num_px = train_set_x_orig.shape[1] #训练、测试集里面的图片的宽度和高度(均为64x64)。
#现在看一看我们加载的东西的具体情况
print("训练集的数量: m_train = " + str(m_train))
print("测试集的数量 : m_test = " + str(m_test))
print("每张图片的宽/高 : num_px = " + str(num_px))
print("每张图片的大小 : (" + str(num_px) + ", " + str(num_px) + ", 3)")
print("训练集_图片的维数 train_set_x : " + str(train_set_x_orig.shape))
print("训练集_标签的维数 train_set_y : " + str(train_set_y.shape))
print("测试集_图片的维数 test_set_x : " + str(test_set_x_orig.shape))
print("测试集_标签的维数: test_set_y " + str(test_set_y.shape))
#将训练集的维度降低并转置。
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
#将测试集的维度降低并转置。
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
print("训练集降维最后的维度:train_set_x_flatten " + str(train_set_x_flatten.shape))
print("训练集_标签的维数 train_set_y : " + str(train_set_y.shape))
print("测试集降维之后的维度: test_set_x_flatten " + str(test_set_x_flatten.shape))
print("测试集_标签的维数 test_set_y : " + str(test_set_y.shape))
print("sanity check after reshaping: " + str(train_set_x_flatten[0:5, 0]))
train_set_x = train_set_x_flatten / 255
test_set_x = test_set_x_flatten / 255
def sigmoid(x):
return 1/(1+np.exp(-x))
def initialize_with_zeros(dim):
"""
This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.
Argument:
dim -- size of the w vector we want (or number of parameters in this case)
Returns:
w -- initialized vector of shape (dim, 1)
b -- initialized scalar (corresponds to the bias)
"""
w=np.zeros((dim,1))
b=0
assert(w.shape==(dim,1))
assert(isinstance(b,float)or isinstance(b,int))
return w,b
print("sigmoid(0) = " + str(sigmoid(0)))
print("sigmoid(9.2) = " + str(sigmoid(9.2)))
dim = 2
w, b = initialize_with_zeros(dim)
print("w = " + str(w))
print("b = " + str(b))
def propagate(w,b,X,Y):
"""
Implement the cost function and its gradient for the propagation explained above
Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of size (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)
Return:
cost -- negative log-likelihood cost for logistic regression
dw -- gradient of the loss with respect to w, thus same shape as w
db -- gradient of the loss with respect to b, thus same shape as b
Tips:
- Write your code step by step for the propagation
"""
m=X.shape[1]
#正向传播
A=sigmoid(np.dot(w.T,X)+b)
cost=(-1/m)*np.sum(Y*np.log(A)+(1-Y)*np.log(1-A))#整个训练集的损失函数
#反向传播
dw=1/m*np.dot(X,(A-Y).T)
db=1/m*np.sum(A-Y)
assert(dw.shape==w.shape)
assert(db.dtype==float)
cost=np.squeeze(cost)
assert(cost.shape==())
grads={
'dw':dw,
'db':db,
}
return grads,cost
w, b, X, Y = np.array([[1], [2]]), 2, np.array([[1, 2],
[3, 4]]), np.array([[1, 0]])
grads, cost = propagate(w, b, X, Y)
print("dw = " + str(grads["dw"]))
print("db = " + str(grads["db"]))
print("cost = " + str(cost))
def optimize(w,b,X,Y,num_iterations,learning_rate,print_cost=False):
"""
This function optimizes w and b by running a gradient descent algorithm
Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of shape (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
num_iterations -- number of iterations of the optimization loop
learning_rate -- learning rate of the gradient descent update rule
print_cost -- True to print the loss every 100 steps
Returns:
params -- dictionary containing the weights w and bias b
grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
Tips:
You basically need to write down two steps and iterate through them:
1) Calculate the cost and the gradient for the current parameters. Use propagate().
2) Update the parameters using gradient descent rule for w and b.
"""
costs=[]
for i in range(num_iterations):
grads,cost=propagate(w,b,X,Y)
dw=grads['dw']
db=grads['db']
w=w-learning_rate*dw
b=b-learning_rate*db
if i%100==0:
costs.append(cost)
if print_cost and i%100==0:
print("Cost after iteration %i:%f "%(i,cost))
params={'w':w,
'b':b,
}
grads={'dw':dw,
'db':db,
}
return params,grads,costs
params, grads, costs = optimize(w,
b,
X,
Y,
num_iterations=100,
learning_rate=0.009,
print_cost=False)
print("w = " + str(params["w"]))
print("b = " + str(params["b"]))
print("dw = " + str(grads["dw"]))
print("db = " + str(grads["db"]))
def predict(w,b,X):
'''
Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)
Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of size (num_px * num_px * 3, number of examples)
Returns:
Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
'''
m=X.shape[1]
Y_prediction=np.zeros((1,m))
w=w.reshape(X.shape[0],1)
# Compute vector "A" predicting the probabilities of a cat being present in the picture
### START CODE HERE ### (≈ 1 line of code)
A=sigmoid(np.dot(w.T,X)+b)
### END CODE HERE ###
for i in range(A.shape[1]):
# Convert probabilities a[0,i] to actual predictions p[0,i]
### START CODE HERE ### (≈ 4 lines of code)
if A[0,i] >0.5 :
Y_prediction[0,i]=1
else:
Y_prediction[0,i]=0
assert(Y_prediction.shape==(1,m))
return Y_prediction
print("predictions = " + str(predict(w, b, X)))
def model(X_train,Y_train,X_test,Y_test,num_iterations=2000,learning_rate=0.5,print_cost=False):
"""
Builds the logistic regression model by calling the function you've implemented previously
Arguments:
X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
print_cost -- Set to true to print the cost every 100 iterations
Returns:
d -- dictionary containing information about the model.
"""
w,b=initialize_with_zeros(X_train.shape[0])
# Gradient descent (≈ 1 line of code)
parameters,grads,costs=optimize(w,b,X_train,Y_train,num_iterations,learning_rate,print_cost)
# Retrieve parameters w and b from dictionary "parameters"
w=parameters['w']
b=parameters['b']
# Predict test/train set examples (≈ 2 lines of code)
Y_predict_train=predict(w,b,X_train)
Y_predict_test = predict(w, b, X_test)
# Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_predict_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_predict_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_predict_test,
"Y_prediction_train" : Y_predict_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d
d = model(train_set_x,
train_set_y,
test_set_x,
test_set_y,
num_iterations=2000,
learning_rate=0.005,
print_cost=True)
# Plot learning curve (with costs)
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()
进一步分析
提醒:为了让梯度下降有效,你必须明智地选择学习速度。学习率 α \alpha α决定了我们更新参数的速度。如果学习率太大,我们可能会“超出”最佳值。类似地,如果它太小,我们将需要太多的迭代来收敛到最佳值。这就是为什么使用良好的学习速度是至关重要的。
让我们将我们模型的学习曲线与几种学习率的选择进行比较。运行下面的单元格。这大约需要1分钟。也可以尝试不同于我们初始化的learning_rates变量所包含的三个值,看看会发生什么。
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
print ("learning rate is: " + str(i))
models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
print ('\n' + "-------------------------------------------------------" + '\n')
for i in learning_rates:
plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))
plt.ylabel('cost')
plt.xlabel('iterations')
legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()