深度学习(四):基于吴恩达课程作业的逻辑回归代码详解

1.图像预处理

import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage

def load_dataset():              #在相应路径下读取数据
    train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels

    test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels

    classes = np.array(test_dataset["list_classes"][:]) # the list of classes
    
    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
    
    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
#读取训练集和测试集的维数,用来进行数据集预处理
m_train=train_set_x_orig.shape[0]                     #样本数
m_test=test_set_x_orig.shape[0]                       #测试集数量
num_px=train_set_x_orig.shape[1]                      #图像是正方形形式,所以读取样本像素的行或列就可以了(1 or 2)
print ("Number of training examples: m_train = " + str(m_train))
print ("Number of testing examples: m_test = " + str(m_test))
print ("Height/Width of each image: num_px = " + str(num_px))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_set_x shape: " + str(train_set_x_orig.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x shape: " + str(test_set_x_orig.shape))
print ("test_set_y shape: " + str(test_set_y.shape))

#进行矩阵重塑,将像素值统一作为矩阵的列来排放,类似于X=[x1,x2,x3,x4.......xm]
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
train_set_x_flatten=train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T
test_set_x_flatten=test_set_x_orig.reshape(test_set_x_orig.shape[0],-1).T
print(train_set_x_orig.shape)          #打印矩阵的维数,发现从三维矩阵成功转换为一维矩阵
print(train_set_x_flatten.shape)

#将像素值全部除以255,把颜色强度标准化
train_set_x=train_set_x_flatten/255
test_set_x=test_set_x_flatten/255

深度学习(四):基于吴恩达课程作业的逻辑回归代码详解

train_set_x_orig:未经处理的训练样本的像素初值   

train_set_y_orig:训练样本所对应的真值 (0 or 1)

test_set_x_orig:训练好w和b的值后用来测试的样本

test_set_y_orig:对应的真值(需要将模拟的真值与其比较,得出最优算法)

这里矩阵重塑就是将矩阵重塑为以像素值作为一列,样本数量确定列数的矩阵(具体方法可以参考吴恩达的视频)

预处理完毕后,我们会得到(12288(三通道像素值总个数),209(样本数量))的rgb三色分布在(0,1)的样本矩阵。

2.算法的一般架构

对于一个样本:

深度学习(四):基于吴恩达课程作业的逻辑回归代码详解

 

然后通过训练所有的样本并进行求和计算cost函数

深度学习(四):基于吴恩达课程作业的逻辑回归代码详解

理解了算法部分,就该进行代码实战了

3.编写代码

编写代码分为三步:

1.定义模型的结构

2.初始化模型参数

3.循环进行参数迭代修正

1.定义模型结构

(i)定义sigmoid函数:

def sigmoid(z):
    s=1/(1+np.exp(-z))
    return s

前篇有讲过numpy的优势,可参考(36条消息) 深度学习笔记(二):逻辑回归的理解_fyjyyds的博客-CSDN博客深度学习(四):基于吴恩达课程作业的逻辑回归代码详解https://blog.csdn.net/fyjyyds/article/details/118935150?spm=1001.2014.3001.5501详情恕不赘述

(ii)定义参数初始化函数:

def initialize_with_zeros(dim):   
    w = np.zeros((dim, 1))        #定义一个维数为(dim,1)的矩阵   
    b = 0
    assert (w.shape == (dim, 1))                   #assert函数确保矩阵维数正确  
    assert (isinstance(b, float) or isinstance(b, int))
    return w, b

 

(iii)定义正向反向传播函数:

函数的算法已在笔记(二)中写出深度学习笔记(二):逻辑回归的理解_fyjyyds的博客-CSDN博客import sensor #感光元件sensor.reset() #初始化感光元件sensor.set_pixformat()#设置像素模式 RGB565为彩色,GRAYSCALE为灰度sensor.set_framesize() #设置图像的大小深度学习(四):基于吴恩达课程作业的逻辑回归代码详解https://blog.csdn.net/fyjyyds/article/details/118935150?spm=1001.2014.3001.5501

这里只给出较关键参数算法

深度学习(四):基于吴恩达课程作业的逻辑回归代码详解

 

 深度学习(四):基于吴恩达课程作业的逻辑回归代码详解

 

 深度学习(四):基于吴恩达课程作业的逻辑回归代码详解

 此处参数与上文一致

def propagate(w, b, X, Y):
    #w和b是sigmoid函数参数
    #X,Y分别是训练样本集和对应的真值集
    m = X.shape[1]

    # 求出cost函数

    A = sigmoid(np.dot(w.T, X) + b)
    cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))

    # 求导
    dw = np.dot(X, (A - Y).T) / m
    db = np.sum(A - Y) / m

    assert (dw.shape == w.shape)
    assert (db.dtype == float)

    cost = np.squeeze(cost)
    grads = {"dw": dw,
             "db": db}

    return grads, cost

 返回的grads中保存了dw矩阵(里面的元素是cost函数对w1,w2......的求导)和db(cost对b参数的求导)

有了dw和db后,就可以在循环中一遍一遍的优化w和b参数,得到损失最小的cost函数

(iv)定义参数优化函数:

num_iterations为迭代次数

learning_rate为dw和db的权重

print_cost:是否打印cost的值

def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
    costs = []

    for i in range(num_iterations):


        #计算cost函数,得到dw,db
        grads, cost = propagate(w, b, X, Y)

        #设置dw,db参数
        dw = grads["dw"]
        db = grads["db"]


        #进行迭代优化参数
        b = b - learning_rate * db
        w = w - dw * learning_rate

        #每遍历一百遍打印损失
        if i % 100 == 0:
            costs.append(cost)

        if print_cost and i % 100 == 0:
            print("Cost after iteration %i: %f" % (i, cost))
    #返回最终的w,b值
    params = {"w": w,
              "b": b}

    grads = {"dw": dw,
             "db": db}

    return params, grads, costs

(v)猜测图像含义函数:

def predict(w, b, X):

    m = X.shape[1]
    Y_prediction = np.zeros((1, m))
    w = w.reshape(X.shape[0], 1)
    #用优化过的w和b进行真值计算
    A = sigmoid(np.dot(w.T, X) + b)

    #对算出来的真值进行二值化,分为0和1
    for i in range(A.shape[1]):


    #
        if (A[0, i] >= 0.5):
            Y_prediction[0, i] = 1
        else:
            Y_prediction[0, i] = 0


    assert (Y_prediction.shape == (1, m))

    return Y_prediction

最后只要将这些模块整合起来,就可以使用神经网络进行图像遍历并猜测图像含义了

def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False):
    w, b = initialize_with_zeros(X_train.shape[0])
    #求出参数
    params, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
    #导入参数
    w = params["w"]
    b = params["b"]
    # 猜测
    Y_prediction_test = predict(w, b, X_test)
    Y_prediction_train = predict(w, b, X_train)

    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))

    d = {"costs": costs,
         "Y_prediction_test": Y_prediction_test,
         "Y_prediction_train": Y_prediction_train,
         "w": w,
         "b": b,
         "learning_rate": learning_rate,
         "num_iterations": num_iterations}

    return d

将自己的参数带入即可

ps:我们还可以通过画图的方式优化learning_rate的选值

costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()

深度学习(四):基于吴恩达课程作业的逻辑回归代码详解

 

 多试几次就可以得到较理想的learning_rate啦

上一篇:相关分析与回归分析


下一篇:数据分析:Pandas获取数据源