1. JAVA多线程实现/创建方式
1.1 继承Thread类
Thread类本质上是实现了Runnable接口的一个实例,代表一个线程的实例。启动线程的唯一方法就是通过条用Thread类的start()方法。start()方法是一个native方法,它将启动一个新线程,并执行run()方法。
创建线程的步骤:
1 定义一个类继承Thread。
2 重写run方法。
3 创建子类对象,就是创建线程对象。
4 调用start方法,开启线程并让线程执行,同时还会告诉jvm去调用run方法
思考:
(1)创建线程的目的是什么?
是为了建立程序单独的执行路径,让多部分代码实现同时执行。也就是说线程创建并执行需要给定线程要执行的任务。对于之前所讲的主线程,它的任务定义在main函数中。自定义线程需要执行的任务都定义在run方法中。
(2)线程对象调用 run方法和调用start方法区别?
线程对象调用run方法不开启线程。仅是对象调用方法。线程对象调用start开启线程,并让jvm调用run方法在开启的线程中执行。
(3)为什么要继承Thread类,并调用其的start方法才能开启线程呢?
继承Thread类:因为Thread类用来描述线程,具备线程应该有功能。
(4)那为什么不直接创建Thread类的对象呢?
Thread t1 = new Thread().start();
这样做没有错,但是该start调用的是Thread类中的run方法,而这个run方法没有做什么事情,更重要的是这个run方法中并没有定义我们需要让线程执行的代码。
点击查看代码
package ThreadPackage;
import entity.User;
public class ThreadDemo extends Thread {
private User user;
public ThreadDemo() {
}
public ThreadDemo(User user) {
this.user = user;
}
public void setUser(User user) {
this.user = user;
}
@Override
public void run() {
System.out.println(this.getName() + "User's information : " + this.user + "," + this.getState());
}
public static void main(String[] args) {
User user = new User(12, "zhangsan", "1234");
ThreadDemo threadDemo = new ThreadDemo();
threadDemo.setUser(user);
System.out.println(threadDemo.getState());
System.out.println(threadDemo.getName());
new Thread(threadDemo).start();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(threadDemo.getState());
ThreadDemo thread2 = new ThreadDemo(user);
thread2.start();
}
}
获取当前线程和线程名称
- currentThread()获取当前线程对象
- currentThread().getName();获取当前线程对象的名称
1.2 实现Runnable接口
如果创建的目标类已经继承另一个类,此时就无法再继承Thread类,JAVA中不允许多继承。但是,可实现Runnable接口,然后创建Runnable的子类对象,传入到某个线程的构造方法中,开启线程。
创建线程的步骤。
1、定义类实现Runnable接口。
2、覆盖接口中的run方法。。
3、创建Thread类的对象
4、将Runnable接口的子类对象作为参数传递给Thread类的构造函数。
5、调用Thread类的start方法开启线程。
点击查看代码
package ThreadPackage;
import entity.User;
public class ThreadRunnableDemo implements Runnable {
private User user;
public ThreadRunnableDemo() {
}
public ThreadRunnableDemo(User user) {
this.user = user;
}
public void setUser(User user) {
this.user = user;
}
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + "User's information : " + this.user);
}
public static void main(String[] args) {
User user = new User(12, "zhangsan", "1234");
ThreadRunnableDemo thread1 = new ThreadRunnableDemo();
thread1.setUser(user);
new Thread(thread1).start();
ThreadRunnableDemo thread2 = new ThreadRunnableDemo(user);
new Thread(thread2).start();
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(user);
}
}).start();
}
}
思考:为什么需要定一个类去实现Runnable接口呢?继承Thread类和实现Runnable接口有啥区别呢?
- 实现Runnable接口,避免了继承Thread类的单继承局限性。创建Thread类的对象,只有创建Thread类的对象才可以创建线程。线程任务已被封装到Runnable接口的run方法中,而这个run方法所属于Runnable接口的子类对象,所以将这个子类对象作为参数传递给Thread的构造函数,这样,线程对象创建时就可以明确要运行的线程的任务。
思考:实现Runnable的好处
-
实现Runnable接口,避免了继承Thread类的单继承局限性
-
实现Runnable接口的方式,更加的符合面向对象,线程分为两部分,一部分线程对象,一部分线程任务。继承Thread类,线程对象和线程任务耦合在一起。一旦创建Thread类的子类对象,既是线程对象,有又有线程任务。实现runnable接口,将线程任务单独分离出来封装成对象,类型就是Runnable接口类型。Runnable接口对线程对象和线程任务进行解耦。
1.3 线程匿名内部类使用
点击查看代码
使用线程的内匿名内部类方式,可以方便的实现每个线程执行不同的线程任务操作。
方式1:创建线程对象时,直接重写Thread类中的run方法
new Thread() {
public void run() {
for (int x = 0; x < 40; x++) {
System.out.println(Thread.currentThread().getName()
+ "...X...." + x);
}
}
}.start();
方式2:使用匿名内部类的方式实现Runnable接口,重新Runnable接口中的run方法
Runnable r = new Runnable() {
public void run() {
for (int x = 0; x < 40; x++) {
System.out.println(Thread.currentThread().getName()
+ "...Y...." + x);
}
}
};
new Thread(r).start();
1.3 实现Callable接口
有返回值的任务必须实现Callable接口,重写call方法。执行Callable任务后,可以获取一个Future对象,在改对象上调用get方法就可以获得Callable任务返回的Object。
2. 线程池
线程池,其实就是一个容纳多个线程的容器,其中的线程可以反复使用,省去了频繁创建线程对象的操作,无需反复创建线程而消耗过多资源。
为什么使用线程池?
在java中,如果每个请求到达就创建一个新线程,开销是相当大的。在实际使用中,创建和销毁线程花费的时间和消耗的系统资源都相当大,甚至可能要比在处理实际的用户请求的时间和资源要多的多。除了创建和销毁线程的开销之外,活动的线程也需要消耗系统资源。如果在一个jvm里创建太多的线程,可能会使系统由于过度消耗内存或“切换过度”而导致系统资源不足。为了防止资源不足,需要采取一些办法来限制任何给定时刻处理的请求数目,尽可能减少创建和销毁线程的次数,特别是一些资源耗费比较大的线程的创建和销毁,尽量利用已有对象来进行服务。
线程池主要用来解决线程生命周期开销问题和资源不足问题。通过对多个任务重复使用线程,线程创建的开销就被分摊到了多个任务上了,而且由于在请求到达时线程已经存在,所以消除了线程创建所带来的延迟。这样,就可以立即为请求服务,使用应用程序响应更快。另外,通过适当的调整线程中的线程数目可以防止出现资源不足的情况。
2.1 使用线程池方式执行Runnable接口
通常,线程池都是通过线程池工厂创建,再调用线程池中的方法获取线程,再通过线程去执行任务方法。
- Executors:线程池创建工厂类
- public static ExecutorService newFixedThreadPool(int nThreads):返回线程池对象
- ExecutorService:线程池类
- Future<?> submit(Runnable task):获取线程池中的某一个线程对象,并执行
- Future接口:用来记录线程任务执行完毕后产生的结果。线程池创建与使用
- 使用线程池中线程对象的步骤:
- 创建线程池对象
- 创建Runnable接口子类对象
- 提交Runnable接口子类对象
- 关闭线程池
(1)定义一个对象实现Runnable接口,并重写Runnable方法
点击查看代码
public class MyRunnable implements Runnable {
@Override
public void run() {
System.out.println("我要一个教练");
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("教练来了: " +Thread.currentThread().getName());
System.out.println("教我游泳,交完后,教练回到了游泳池");
}
}
(2)使用线程池方式执行Runnable接口
点击查看代码
public class ThreadPoolDemo {
public static void main(String[] args) {
//创建线程池对象
ExecutorService service = Executors.newFixedThreadPool(2);//包含2个线程对象
//创建Runnable实例对象
MyRunnable r = new MyRunnable();
//从线程池中获取线程对象,然后调用MyRunnable中的run()
service.submit(r);
//再获取个线程对象,调用MyRunnable中的run()
service.submit(r);
service.submit(r);
//注意:submit方法调用结束后,程序并不终止,是因为线程池控制了线程的关闭。将使用完的线程又归还到了线程池中
//关闭线程池
//service.shutdown();
}
}
2.2 使用线程池方式执行Callable接口
- Callable接口:与Runnable接口功能相似,用来指定线程的任务。其中的call()方法,用来返回线程任务执行完毕后的结果,call方法可抛出异常。
-
ExecutorService:线程池类
- <T> Future<T> submit(Callable<T> task):获取线程池中的某一个线程对象,并执行线程中的call()方法
- Future接口:用来记录线程任务执行完毕后产生的结果。线程池创建与使用
-
Future接口:用来记录线程任务执行完毕后产生的结果。线程池创建与使用
-
call()方法,用来返回线程任务执行完毕后的结果,call方法可抛出异常。
-
使用线程池中线程对象的步骤:
- 创建线程池对象
- 创建Callable接口子类对象
- 提交Callable接口子类对象
- 关闭线程池
(1)定义一个对象实现Callable接口实,并冲洗call()方法,call方法可抛出异常、返回线程任务执行完毕后的结果
点击查看代码
public class MyCallable implements Callable {
@Override
public Object call() throws Exception {
System.out.println("我要一个教练:call");
Thread.sleep(2000);
System.out.println("教练来了: " +Thread.currentThread().getName());
System.out.println("教我游泳,交完后,教练回到了游泳池");
return null;
}
}
(2)使用线程池方式执行Callable
点击查看代码
public class ThreadPoolDemo {
public static void main(String[] args) {
//创建线程池对象
ExecutorService service = Executors.newFixedThreadPool(2);//包含2个线程对象
//创建Callable对象
MyCallable c = new MyCallable();
//从线程池中获取线程对象,然后调用MyRunnable中的run()
service.submit(c);
//再获取2个教练
service.submit(c);
service.submit(c);
//注意:submit方法调用结束后,程序并不终止,是因为线程池控制了线程的关闭。将使用完的线程又归还到了线程池中
//关闭线程池
//service.shutdown();
}
}
*使用线程池计对两个数求和
(1)定义一个对象实现Callable接口,并重写callable方法
点击查看代码
public class MyCallable implements Callable<Integer> {
//成员变量
int x = 5;
int y = 3;
//构造方法
public MyCallable(){
}
public MyCallable(int x, int y){
this.x = x;
this.y = y;
}
@Override
public Integer call() throws Exception {
return x+y;
}
}
(2)创建线程池,并执行call()方法
点击查看代码
public class ThreadPoolDemo {
public static void main(String[] args) throws InterruptedException, ExecutionException {
//创建线程池对象
ExecutorService threadPool = Executors.newFixedThreadPool(2);
//创建一个Callable接口子类对象
//MyCallable c = new MyCallable();
MyCallable c = new MyCallable(100, 200);
MyCallable c2 = new MyCallable(10, 20);
//获取线程池中的线程,调用Callable接口子类对象中的call()方法(相当于Runable接口中的run()方法), 完成求和操作
//<Integer> Future<Integer> submit(Callable<Integer> task)
// Future 结果对象
Future<Integer> result = threadPool.submit(c);
//此 Future 的 get 方法所返回的结果类型
Integer sum = result.get();
System.out.println("sum=" + sum);
//再演示
result = threadPool.submit(c2);
sum = result.get();
System.out.println("sum=" + sum);
//关闭线程池(可以不关闭)
}
}