Go之十大经典排序算法

1.冒泡排序

func bubble_sort(li []int) {
for i := 0; i < len(li)-1; i++ {
exchange := false
for j := 0; j < len(li)-i-1; j++ {
if li[j] > li[j+1] {
li[j], li[j+1] = li[j+1], li[j]
exchange = true
}
}
if !exchange {
return
}
}
}

2.选择排序

func select_sort(li []int) {
for i := 0; i < len(li)-1; i++ {
pos := i
for j := i + 1; j < len(li); j++ {
if li[pos] > li[j] {
pos = j
}
}
li[i], li[pos] = li[pos], li[i]
}
}

3.插入排序

func insert_sort(li []int) {
for i := 1; i < len(li); i++ {
tmp := li[i]
j := i - 1
for j >= 0 && tmp < li[j] {
li[j+1] = li[j]
j --
}
li[j+1] = tmp
}
}

4.希尔排序

func shell_sort(li []int) {
for gap := len(li) / 2; gap > 0; gap /= 2 {
for i := gap; i < len(li); i++ {
tmp := li[i]
j := i - gap
for j >= 0 && tmp < li[j] {
li[j+gap] = li[j]
j -= gap
}
li[j+gap] = tmp
}
}
}

5.快速排序

func quick_sort(li []int, left, right int) {
if left >= right {
return
}
i := left
j := right
rand.Seed(time.Now().Unix())
r := rand.Intn(right-left) + left
li[i], li[r] = li[r], li[i]
tmp := li[i]
for i < j {
for i < j && li[j] >= tmp {
j--
}
li[i] = li[j]
for i < j && li[i] <= tmp {
i++
}
li[j] = li[i]
}
li[i] = tmp
quick_sort(li, left, i-1)
quick_sort(li, i+1, right)
}

6.堆排序

func sift(li []int, low, high int) {
i := low
j := 2*i + 1
tmp:=li[i]
for j <= high {
if j < high && li[j] < li[j+1] {
j++
}
if tmp < li[j] {
li[i] = li[j]
i = j
j = 2*i + 1
} else {
break
}
}
li[i] = tmp
} func heap_sort(li []int) {
for i := len(li)/2 - 1; i >= 0; i-- {
sift(li, i, len(li)-1)
}
for j := len(li) - 1; j > 0; j-- {
li[0], li[j] = li[j], li[0]
sift(li, 0, j-1)
}
}

7.归并排序

func merge(li []int, left, mid, right int) {
i := left
j := mid + 1
tmp := []int{}
for i <= mid && j <= right {
if li[i] <= li[j] {
tmp = append(tmp, li[i])
i ++
} else {
tmp = append(tmp, li[j])
j ++
}
}
if i <= mid {
tmp = append(tmp, li[i:mid+1]...)
} else {
tmp = append(tmp, li[j:right+1]...)
}
for k := 0; k < len(tmp); k++ {
li[left+k] = tmp[k]
}
} func merge_sort(li []int, left, right int) {
if left < right {
mid := (left + right) / 2
merge_sort(li, left, mid)
merge_sort(li, mid+1, right)
merge(li, left, mid, right)
}
}

8.计数排序

func count_sort(li []int) {
max_num := li[0]
for i := 1; i < len(li); i++ {
if max_num < li[i] {
max_num = li[i]
}
}
arr := make([]int, max_num+1)
for j := 0; j < len(li); j++ {
arr[li[j]]++
}
k := 0
for m, n := range arr {
for p := 0; p < n; p++ {
li[k] = m
k++
}
}
}

9.桶排序

func bin_sort(li []int, bin_num int) {
min_num, max_num := li[0], li[0]
for i := 0; i < len(li); i++ {
if min_num > li[i] {
min_num = li[i]
}
if max_num < li[i] {
max_num = li[i]
}
}
bin := make([][]int, bin_num)
for j := 0; j < len(li); j++ {
n := (li[j] - min_num) / ((max_num - min_num + 1) / bin_num)
bin[n] = append(bin[n], li[j])
k := len(bin[n]) - 2
for k >= 0 && li[j] < bin[n][k] {
bin[n][k+1] = bin[n][k]
k--
}
bin[n][k+1] = li[j]
}
o := 0
for p, q := range bin {
for t := 0; t < len(q); t++ {
li[o] = bin[p][t]
o++
}
}
}

10.基数排序

func radix_sort(li []int) {
max_num := li[0]
for i := 0; i < len(li); i++ {
if max_num < li[i] {
max_num = li[i]
}
}
for j := 0; j < len(strconv.Itoa(max_num)); j++ {
bin := make([][]int, 10)
for k := 0; k < len(li); k++ {
n := li[k] / int(math.Pow(10, float64(j))) % 10
bin[n] = append(bin[n], li[k])
}
m := 0
for p := 0; p < len(bin); p++ {
for q := 0; q < len(bin[p]); q++ {
li[m] = bin[p][q]
m++
}
}
}
}

11.用堆排解决top_k问题,思路:

  a.先取前k个数建小根堆,这样就能保证堆顶元素是整个堆的最小值;

  b.然后遍历列表的k到最后,如果值比堆顶大,就和堆顶交换,交换完后再对堆建小根堆,这样就能保证交换完后,堆顶元素仍然是整个堆的最小值;

  c.一直遍历到列表的最后一个值,这一步做完之后,就保证了整个列表最大的前k个数已经放进了堆里;

  d.按数的大到小出堆;

func sift(li []int, low, high int) {
i := low
j := 2*i + 1
tmp := li[i]
for j <= high {
if j < high && li[j] > li[j+1] {
j++
}
if tmp > li[j] {
li[i] = li[j]
i = j
j = 2*i + 1
} else {
break
}
}
li[i] = tmp
} func top_k(li []int, k int) []int {
for i := k/2 - 1; i >= 0; i-- {
sift(li, i, k-1)
}
for j := k; j < len(li); j++ {
if li[0] < li[j] {
li[0], li[j] = li[j], li[0]
sift(li, 0, k-1)
}
}
for n := k - 1; n > 0; n-- {
li[0], li[n] = li[n], li[0]
sift(li, 0, n-1)
}
return li[:k]
}
上一篇:【转载】PHP性能优化干货


下一篇:tomcat之Session的管理