8个数据清洗Python代码,复制可用,最长11行 | 资源

最近,大数据工程师Kin Lim Lee在Medium上发表了一篇文章,介绍了8个用于数据清洗的Python代码。

数据清洗,是进行数据分析和使用数据训练模型的必经之路,也是最耗费数据科学家/程序员精力的地方。

这些用于数据清洗的代码有两个优点:一是由函数编写而成,不用改参数就可以直接使用。二是非常简单,加上注释最长的也不过11行。

在介绍每一段代码时,Lee都给出了用途,也在代码中也给出注释。

大家可以把这篇文章收藏起来,当做工具箱使用。

8个数据清洗Python代码,复制可用,最长11行 | 资源

涵盖8大场景的数据清洗代码

这些数据清洗代码,一共涵盖8个场景,分别是:

删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、删除列中的空格、用字符串连接两列(带条件)、转换时间戳(从字符串到日期时间格式)

删除多列

在进行数据分析时,并非所有的列都有用,用df.drop可以方便地删除你指定的列。

8个数据清洗Python代码,复制可用,最长11行 | 资源

转换数据类型

当数据集变大时,需要转换数据类型来节省内存。

8个数据清洗Python代码,复制可用,最长11行 | 资源

将分类变量转换为数值变量

一些机器学习模型要求变量采用数值格式。这需要先将分类变量转换为数值变量。同时,你也可以保留分类变量,以便进行数据可视化。

8个数据清洗Python代码,复制可用,最长11行 | 资源

检查缺失数据

如果你要检查每列缺失数据的数量,使用下列代码是最快的方法。可以让你更好地了解哪些列缺失的数据更多,从而确定怎么进行下一步的数据清洗和分析操作。

8个数据清洗Python代码,复制可用,最长11行 | 资源

删除列中的字符串

有时候,会有新的字符或者其他奇怪的符号出现在字符串列中,这可以使用df[‘col_1’].replace很简单地把它们处理掉。

8个数据清洗Python代码,复制可用,最长11行 | 资源

删除列中的空格

数据混乱的时候,什么情况都有可能发生。字符串开头经常会有一些空格。在删除列中字符串开头的空格时,下面的代码非常有用。

8个数据清洗Python代码,复制可用,最长11行 | 资源

用字符串连接两列(带条件)

当你想要有条件地用字符串将两列连接在一起时,这段代码很有帮助。比如,你可以在第一列结尾处设定某些字母,然后用它们与第二列连接在一起。

根据需要,结尾处的字母也可以在连接完成后删除。

8个数据清洗Python代码,复制可用,最长11行 | 资源

转换时间戳(从字符串到日期时间格式)

在处理时间序列数据时,我们很可能会遇到字符串格式的时间戳列。

这意味着要将字符串格式转换为日期时间格式(或者其他根据我们的需求指定的格式) ,以便对数据进行有意义的分析。

8个数据清洗Python代码,复制可用,最长11行 | 资源

上一篇:MQ的导出备份


下一篇:免费开发者证书真机调试App ID失效问题:"Unable to add App ID because the '10' App ID limit in '7' days has been exceeded."解决方案(5月5号)