1.pandas df 与 spark df的相互转换
df_s=spark.createDataFrame(df_p)
df_p=df_s.toPandas()
1
2
3
|
import pandas as pd
import numpy as np
arr = np.arange( 6 ).reshape( - 1 , 3 )
|
1
2
|
df_p = pd.DataFrame(arr)
df_p
|
1
2
|
df_p.columns = [ 'a' , 'b' , 'c' ]
df_p
|
1
2
|
df_s = spark.createDataFrame(df_p)
df_s.show()
|
2. Spark与Pandas中DataFrame对比
http://www.lining0806.com/spark%E4%B8%8Epandas%E4%B8%ADdataframe%E5%AF%B9%E6%AF%94/
3.1 利用反射机制推断RDD模式
- sc创建RDD
- 转换成Row元素,列名=值
- spark.createDataFrame生成df
- df.show(), df.printSchema()
1
2
3
4
|
from pyspark.sql import Row
people = spark.sparkContext.textFile( 'file:///usr/local/spark/examples/src/main/resources/people.txt' ). map ( lambda line:line.split( ',' )). map ( lambda w:Row(name = w[ 0 ],age = int (w[ 1 ])))
sPeople = spark.createDataFrame(people)
sPeople.createOrReplaceTempView( 'people' )
|
1
2
3
|
personDF = spark.sql( 'select name,age from people where age>20' )
personRDD = personDF.rdd. map ( lambda p: "Name:" + p.name + "," + "Age:" + str (p.age))
personRDD.foreach( print )
|
3.2 使用编程方式定义RDD模式
- 生成“表头”
- fields = [StructField(field_name, StringType(), True) ,...]
- schema = StructType(fields)
1
2
3
4
|
from pyspark.sql.types import *
from pyspark.sql import Row
schemaString = 'name age'
fields = [StructField(field_name,StringType(), True ) for field_name in schemaString.split( ' ' )]<br>schema = StructType(fields)
|
1
2
3
4
|
lines = spark.sparkContext.textFile( 'file:///usr/local/spark/examples/src/main/resources/people.txt' )
part = lines. map ( lambda w:w.split( "," ))
peoples = part. map ( lambda p:Row(p[ 0 ],p[ 1 ].strip()))
peoples.collect()
|
- 把“表头”和“表中的记录”拼装在一起
- = spark.createDataFrame(RDD, schema)
1
2
3
|
schemaPeople = spark.createDataFrame(people,schema)
schemaPeople.show()
schemaPeople.printSchema()
|
4. DataFrame保存为文件
df.write.json(dir)
1
|
schemaPeople.write.json( 'file:///home/hadoop/schema_out' )
|