hdu 4990 Reading comprehension(等比数列法)

题目链接:

pid=4990" style="color:rgb(255,153,0); text-decoration:none; font-family:Arial; line-height:26px">http://acm.hdu.edu.cn/showproblem.php?pid=4990

思路:曾经有一个矩阵乘法的做法请戳这儿。。

開始我们把数都不模。。。

能够得到一个规律

n:1        ans:1      4^0 
                        n:2     ans:2         2*(4^0)

2                
5      4^0+4^1                        4              10 
     2*(4^0+4^1)

3                 21    4^0+4^1+4^2                6 
            42      2*(4^0+4^1+4^2  )

7                 85    4^0+4^1+4^2+4^3         8 
            170   
2*(4^0+4^1+4^2+4^3  )

所以能够看出规律。。

。然后我们直接计算。

。。。注意不能用等比数列的求和公式。。。。得用分治法中的等比数列求和。。。。。

code:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath> using namespace std; typedef __int64 LL; int mod; LL power(LL p,LL n) //高速幂
{
LL sq=1;
while(n>0)
{
if(n%2) sq=sq*p%mod;
n/=2;
p=p*p%mod;
}
return sq;
} LL sum(LL p,LL n) //等比数列求和
{
if(n==0) return 1;
if(n%2)
{
return (sum(p,n/2)*(1+power(p,n/2+1)))%mod;
}
else
{
return (sum(p,n/2-1)*(1+power(p,n/2+1))+power(p,n/2))%mod;
}
} int main()
{
int n,m;
while(scanf("%d%d",&n,&m)==2)
{
mod=m;
int ans=0;
if(n&1)
{
ans=sum(4,n/2);
}
else
{
ans=sum(4,n/2-1);
ans*=2;
}
printf("%d\n",ans%mod);
}
return 0;
}
上一篇:HDU - 4990 Reading comprehension 【矩阵快速幂】


下一篇:hdu4990 Reading comprehension 矩阵快速幂